In humans, the type I interferon (IFN) family consists of 13 IFN- § subtypes, IFN-g and IFN-J ; the newly discovered IFN-like family consists of IFN-Q 1, -Q 2 and -Q 3. We have investigated the expression of type I and Q IFN genes following virus infections or Toll-like receptor (TLR) triggering in monocyte-derived DC (MDDC) and plasmacytoid DC (pDC). We found that all IFN- § , -g , -J and -Q subtypes are expressed in influenza-virus-infected MDDC or pDC. Conversely, differential type I IFN gene transcription was induced in MDDC and pDC stimulated by specific TLR agonists. TLR-9 stimulation by CpG DNA induced the expression of all IFN- § , -g , -J and -Q subtypes in pDC, whereas TLR-4 stimulation by LPS, or TLR-3 stimulation by poly I:C, induced only IFN-g and IFN-Q gene expression in MDDC. The expression pattern of IFN regulatory factor (IRF)-5 and IRF-7 in MDDC and pDC was also determined. IRF-5 was constitutively expressed in the two DC subsets whereas IRF-7 was constitutive in pDC but its expression was induced along MDDC maturation. Overall, our data indicate that the coordinated expression of IFN-Q with IFN-g would be of crucial importance for the maturation of DC.
The tumor microenvironment restrains conventional T cell (Tconv) activation while facilitating the expansion of Tregs. Here we showed that Tregs' advantage in the tumor milieu relies on supplemental energetic routes involving lipid metabolism. In murine models, tumor-infiltrating Tregs displayed intracellular lipid accumulation, which was attributable to an increased rate of fatty acid (FA) synthesis. Since the relative advantage in glucose uptake may fuel FA synthesis in intratumoral Tregs, we demonstrated that both glycolytic and oxidative metabolism contribute to Tregs' expansion. We corroborated our data in human tumors showing that Tregs displayed a gene signature oriented toward glycolysis and lipid synthesis. Our data support a model in which signals from the tumor microenvironment induce a circuitry of glycolysis, FA synthesis, and oxidation that confers a preferential proliferative advantage to Tregs, whose targeting might represent a strategy for cancer treatment.
In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV) or subunit (SU) vaccines. The reason for this discrepancy in immunogenicity is a long-standing enigma. Here, we show that stimulation of Toll-like receptors (TLRs) of the innate immune system, in particular stimulation of TLR7, by H5N1 WIV vaccine is the prime determinant of the greater magnitude and Th1 polarization of the WIV-induced immune response, as compared to SV- or SU-induced responses. This TLR dependency largely explains the relative loss of immunogenicity in SV and SU vaccines. The natural pathogen-associated molecular pattern (PAMP) recognized by TLR7 is viral genomic ssRNA. Processing of whole virus particles into SV or SU vaccines destroys the integrity of the viral particle and leaves the viral RNA prone to degradation or involves its active removal. Our results show for a classic vaccine that the acquired immune response evoked by vaccination can be enhanced and steered by the innate immune system, which is triggered by interaction of an intrinsic vaccine component with a pattern recognition receptor (PRR). The insights presented here may be used to further improve the immune-stimulatory and dose-sparing properties of classic influenza vaccine formulations such as WIV, and will facilitate the development of new, even more powerful vaccines to face the next influenza pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.