The tumor microenvironment restrains conventional T cell (Tconv) activation while facilitating the expansion of Tregs. Here we showed that Tregs' advantage in the tumor milieu relies on supplemental energetic routes involving lipid metabolism. In murine models, tumor-infiltrating Tregs displayed intracellular lipid accumulation, which was attributable to an increased rate of fatty acid (FA) synthesis. Since the relative advantage in glucose uptake may fuel FA synthesis in intratumoral Tregs, we demonstrated that both glycolytic and oxidative metabolism contribute to Tregs' expansion. We corroborated our data in human tumors showing that Tregs displayed a gene signature oriented toward glycolysis and lipid synthesis. Our data support a model in which signals from the tumor microenvironment induce a circuitry of glycolysis, FA synthesis, and oxidation that confers a preferential proliferative advantage to Tregs, whose targeting might represent a strategy for cancer treatment.
SummaryMitochondria are key players in the regulation of T cell biology by dynamically responding to cell needs, but how these dynamics integrate in T cells is still poorly understood. We show here that the mitochondrial pro-fission protein Drp1 fosters migration and expansion of developing thymocytes both in vitro and in vivo. In addition, we find that Drp1 sustains in vitro clonal expansion and cMyc-dependent metabolic reprogramming upon activation, also regulating effector T cell numbers in vivo. Migration and extravasation defects are also exhibited in Drp1-deficient mature T cells, unveiling its crucial role in controlling both T cell recirculation in secondary lymphoid organs and accumulation at tumor sites. Moreover, the observed Drp1-dependent imbalance toward a memory-like phenotype favors T cell exhaustion in the tumor microenvironment. All of these findings support a crucial role for Drp1 in several processes during T cell development and in anti-tumor immune-surveillance.
Regulatory T cells (Tregs) can be considered as a mixed population of distinct subsets, endowed with a diverse extent and quality of adaptation to microenvironmental signals. Here, we uncovered an opposite distribution of Treg expansion, phenotype, and plasticity in different microenvironments in the same organ (liver) derived from patients with chronic hepatitis C: On the one side, cirrhotic and tumor fragments were moderately and highly infiltrated by Tregs, respectively, expressing OX40 and a T‐bethighIFN‐γ– “T‐helper (Th)1‐suppressing” phenotype; on the other side, noncirrhotic liver specimens contained low frequencies of Tregs that expressed low levels of OX40 and highly produced interferon‐gamma (IFN‐γ; T‐bet+IFN‐γ+), thus becoming “Th1‐like” cells. OX40‐expressing and Th1‐suppressing Tregs were enriched in the Helios‐positive subset, carrying highly demethylated Treg cell‐specific demethylated region that configures committed Tregs stably expressing forkhead box protein 3. OX40 ligand, mostly expressed by M2‐like monocytes and macrophages, boosted OX40+ Treg proliferation and antagonized the differentiation of Th1‐like Tregs. However, this signal is counteracted in noncirrhotic liver tissue (showing various levels of inflammation) by high availability of interleukin‐12 and IFN‐γ, ultimately leading to complete, full Th1‐like Treg differentiation. Conclusion: Our data demonstrate that Tregs can finely adapt, or even subvert, their classical inhibitory machinery in distinct microenvironments within the same organ. (Hepatology 2014;60:1494–1507)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.