The tumor microenvironment restrains conventional T cell (Tconv) activation while facilitating the expansion of Tregs. Here we showed that Tregs' advantage in the tumor milieu relies on supplemental energetic routes involving lipid metabolism. In murine models, tumor-infiltrating Tregs displayed intracellular lipid accumulation, which was attributable to an increased rate of fatty acid (FA) synthesis. Since the relative advantage in glucose uptake may fuel FA synthesis in intratumoral Tregs, we demonstrated that both glycolytic and oxidative metabolism contribute to Tregs' expansion. We corroborated our data in human tumors showing that Tregs displayed a gene signature oriented toward glycolysis and lipid synthesis. Our data support a model in which signals from the tumor microenvironment induce a circuitry of glycolysis, FA synthesis, and oxidation that confers a preferential proliferative advantage to Tregs, whose targeting might represent a strategy for cancer treatment.
Regulatory T cells (Tregs) can be considered as a mixed population of distinct subsets, endowed with a diverse extent and quality of adaptation to microenvironmental signals. Here, we uncovered an opposite distribution of Treg expansion, phenotype, and plasticity in different microenvironments in the same organ (liver) derived from patients with chronic hepatitis C: On the one side, cirrhotic and tumor fragments were moderately and highly infiltrated by Tregs, respectively, expressing OX40 and a T‐bethighIFN‐γ– “T‐helper (Th)1‐suppressing” phenotype; on the other side, noncirrhotic liver specimens contained low frequencies of Tregs that expressed low levels of OX40 and highly produced interferon‐gamma (IFN‐γ; T‐bet+IFN‐γ+), thus becoming “Th1‐like” cells. OX40‐expressing and Th1‐suppressing Tregs were enriched in the Helios‐positive subset, carrying highly demethylated Treg cell‐specific demethylated region that configures committed Tregs stably expressing forkhead box protein 3. OX40 ligand, mostly expressed by M2‐like monocytes and macrophages, boosted OX40+ Treg proliferation and antagonized the differentiation of Th1‐like Tregs. However, this signal is counteracted in noncirrhotic liver tissue (showing various levels of inflammation) by high availability of interleukin‐12 and IFN‐γ, ultimately leading to complete, full Th1‐like Treg differentiation. Conclusion: Our data demonstrate that Tregs can finely adapt, or even subvert, their classical inhibitory machinery in distinct microenvironments within the same organ. (Hepatology 2014;60:1494–1507)
Tregs can contribute to tumor progression by suppressing antitumor immunity. Exceptionally, in human colorectal cancer (CRC), Tregs are thought to exert beneficial roles in controlling pro-tumor chronic inflammation. The goal of our study was to characterize CRC-infiltrating Tregs at multiple levels, by phenotypical, molecular and functional evaluation of Tregs from the tumor site, compared to non-tumoral mucosa and peripheral blood of CRC patients. The frequency of Tregs was higher in mucosa than in blood, and further significantly increased in tumor. Ex vivo, those Tregs suppressed the proliferation of tumorinfiltrating CD8C and CD4 C T cells. A differential compartmentalization was detected between Helios high and Helios low Treg subsets (thymus-derived versus peripherally induced): while Helios low Tregs were enriched in both sites, only Helios high Tregs accumulated significantly and specifically in tumors, displayed a highly demethylated TSDR region and contained high proportions of cells expressing CD39 and OX40, markers of activation and suppression. Besides the suppression of T cells, Tregs may contribute to CRC progression also through releasing IL-17, or differentiating into Tfr cells that potentially antagonize a protective Tfh response, events that were both detected in tumor-associated Tregs. Overall, our data indicate that Treg accumulation may contribute through multiple mechanisms to CRC establishment and progression.
CD39 is an enzyme which is responsible, together with CD73, for a cascade converting adenosine triphosphate into adenosine diphosphate and cyclic adenosine monophosphate, ultimately leading to the release of an immunosuppressive form of adenosine in the tumor microenvironment. Here, we first review the environmental and genetic factors shaping CD39 expression. Second, we report CD39 functions in the T cell compartment, highlighting its role in regulatory T cells, conventional CD4+ T cells and CD8+ T cells. Finally, we compile a list of studies, from preclinical models to clinical trials, which have made essential contributions to the discovery of novel combinatorial approaches in the treatment of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.