Mesenchymal stem cells (MSCs) are a promising source for cell therapy due to their pluripotency and immunomodulant proprieties. As the identification of “optimal” conditions is important to identify a standard procedure for clinical use. Percoll, Ficoll and whole bone marrow directly plated were tested from the same sample as separation methods. The cells were seeded at the following densities: 100 000, 10 000, 1000, 100, 10 cells/cm2. After reaching confluence, the cells were detached, pooled and re-plated at 1000, 500, 100, and 10 cells/cm2. Statistical analyses were performed. Cumulative Population Doublings (PD) did not show significant differences for the separation methods and seeding densities but only for the plating density. Some small quantity samples plated in T25 flasks at plating densities of 10 and 100 cells/cm2 did not produce any expansion. However, directly plated whole bone marrow resulted in a more advantageous method in terms of CFU-F number, cellular growth and minimal manipulation. No differences were observed in terms of gross morphology, differentiation potential or immunophenotype. These data suggest that plating whole bone marrow at a low cellular density may represent a good procedure for MSC expansion for clinical use.
A promising approach for musculoskeletal repair and regeneration is mesenchymal-stem-cell- (MSC-)based tissue engineering. The aim of the study was to apply a simple protocol based on mincing the umbilical cord (UC), without removing any blood vessels or using any enzymatic digestion, to rapidly obtain an adequate number of multipotent UC-MSCs. We obtained, at passage 1 (P1), a mean value of 4, 2 × 106 cells (SD 0,4) from each UC. At immunophenotypic characterization, cells were positive for CD73, CD90, CD105, CD44, CD29, and HLA-I and negative for CD34 and HLA-class II, with a subpopulation negative for both HLA-I and HLA-II. Newborn origin and multilineage potential toward bone, fat, cartilage, and muscle was demonstrated. Telomere length was similar to that of bone-marrow (BM) MSCs from young donors. The results suggest that simply collecting UC-MSCs at P1 from minced umbilical cord fragments allows to achieve a valuable population of cells suitable for orthopaedic tissue engineering.
This study demonstrates that G-CSF can be safely administrated up to four times over a 1-year period in decompensated cirrhotic patients. The repeated BMC mobilization favors the circulation of stem cells coexpressing hepatic markers and mRNA of liver-related genes.
International guidelines recommend the use of ultrasound as a surveillance tool for hepatocellular carcinoma (HCC) in patients with cirrhosis, while the role of serum biomarkers is still debated. We investigated serum alpha-fetoprotein (AFP), protein induced by vitamin K absence or antagonist II (PIVKA-II) and glypican-3 (GPC-3) diagnostic accuracy for HCC detection and prediction in patients with liver cirrhosis of viral etiology under surveillance. A total of 349 patients (200 cirrhosis and 149 HCC) were enrolled. The 200 patients with cirrhosis consisted of 114 patients still HCC-free after 36 months of follow-up and 86 patients that developed HCC after 13.8 (11.0–19.8) months. AFP, PIVKA-II and GPC-3 were measured in serum samples collected at tumor diagnosis in the 149 patients with HCC, and at the beginning of follow-up in the 200 patients with cirrhosis. The higher performance for HCC detection was observed for PIVKA-II (area under the curve (AUC) = 0.790), followed by AFP (AUC = 0.737) and GPC-3 (AUC = 0.637); the combination of AFP + PIVKA-II improved the diagnostic accuracy to AUC = 0.822. Serum PIVKA-II values, but not AFP and GPC-3, were significantly higher in the 86 cirrhotics that developed HCC compared with the 114 cirrhotics still HCC-free after 36 months of follow-up (p = 0.020). PIVKA-II ≥ 55 mAU/mL allowed to identify patients with cirrhosis at higher risk of HCC development (Log-rank test, p < 0.001; adjusted Hazard Ratio = 1.99, p = 0.001). In conclusion, the measurement of PIVKA-II in patients with cirrhosis may be useful to tailor personalized surveillance strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.