This article proposes the use of a multiscale and multisensor approach to collect and model three-dimensional (3D) data concerning wide and complex areas to obtain a variety of metric information in the same 3D archive, which is based on a single coordinate system. The employment of these 3D georeferenced products is multifaceted and the fusion or integration among different sensors’ data, scales, and resolutions is promising, and it could be useful in the generation of a model that could be defined as a hybrid. The correct geometry, accuracy, radiometry, and weight of the data models are hereby evaluated when comparing integrated processes and results from Terrestrial Laser Scanner (TLS), Mobile Mapping System (MMS), Unmanned Aerial Vehicle (UAV), and terrestrial photogrammetry, while using Total Station (TS) and Global Navigation Satellite System (GNSS) for topographic surveys. The entire analysis underlines the potentiality of the integration and fusion of different solutions and it is a crucial part of the ‘Torino 1911’ project whose main purpose is mapping and virtually reconstructing the 1911 Great Exhibition settled in the Valentino Park in Turin (Italy).
In the framework of the digital documentation of complex environments the advanced Geomatics researches offers integrated solution and multi-sensor strategies for the 3D accurate reconstruction of stratified structures and articulated volumes in the heritage domain. The use of handheld devices for rapid mapping, both image- and range-based, can help the production of suitable easy-to use and easy-navigable 3D model for documentation projects. These types of reality-based modelling could support, with their tailored integrated geometric and radiometric aspects, valorisation and communication projects including virtual reconstructions, interactive navigation settings, immersive reality for dissemination purposes and evoking past places and atmospheres. The aim of this research is localized within the “Torino 1911” project, led by the University of San Diego (California) in cooperation with the PoliTo. The entire project is conceived for multi-scale reconstruction of the real and no longer existing structures in the whole park space of more than 400,000&thinsp;m<sup>2</sup>, for a virtual and immersive visualization of the Turin 1911 International “Fabulous Exposition” event, settled in the Valentino Park. Particularly, in the presented research, a 3D metric documentation workflow is proposed and validated in order to integrate the potentialities of LiDAR mapping by handheld SLAM-based device, the ZEB REVO Real Time instrument by GeoSLAM (2017 release), instead of TLS consolidated systems. Starting from these kind of models, the crucial aspects of the trajectories performances in the 3D reconstruction and the radiometric content from imaging approaches are considered, specifically by means of compared use of common DSLR cameras and portable sensors.
The launch of the new iPad Pro by Apple in March 2020 generated high interest and expectations for different reasons; nevertheless, one of the new features that developers and users were interested in testing was the LiDAR sensor integrated into this device (and, later on, in the iPhone 12 and 13 Pro series). The implications of using this technology are mainly related to augmented and mixed reality applications, but its deployment for surveying tasks also seems promising. In particular, the potentialities of this miniaturized and low-cost sensor embedded in a mobile device have been assessed for documentation from the cultural heritage perspective—a domain where this solution may be particularly innovative. Over the last two years, an increasing number of mobile apps using the Apple LiDAR sensor for 3D data acquisition have been released. However, their performance and the 3D positional accuracy and precision of the acquired 3D point clouds have not yet been fully validated. Among the solutions available, as of September 2021, three iOS apps (SiteScape, EveryPoint, and 3D Scanner App) were tested. They were compared in different surveying scenarios, considering the overall accuracy of the sensor, the best acquisition strategies, the operational limitations, and the 3D positional accuracy of the final products achieved.
Abstract. The main goal of this ongoing research is the evaluation of the iPad Pro built-in LiDAR sensor for large scale 3D rapid mapping. Different aspects have been considered from the architectural surveying perspective and several analyses were carried out focusing on the acquisition phase and the definition of best practices for data collection, the quantitative analysis on the acquired data and their 3D positional accuracy assessment, and the qualitative analysis of the achievable metric products. Despite this paper is a preliminary analysis and deeper studies in various application environment are necessary, the availability of a LiDAR sensor embedded in a tablet or mobile phone, appears promising for rapid surveying purposes. According to test outcomes, the sensor is able to rapidly acquire reliable 3D point clouds suitable for 1:200 architectural rapid mapping; the iPad Pro could represent an interesting novelty also thanks to its price (compared to standard surveying instruments), portability and limited time required both for data acquisition and processing.
<p><strong>Abstract.</strong> Movable heritage preserved in our museums are an invaluable evidence of our past. In order to properly respond to the need of 3D documentation of these significant assets, in the last few years both range-based and image-based solutions have been developed by researchers operating in the framework of Geomatics with a special focus on reaching a high level of detail and on texture radiometric quality, taking into consideration the intrinsic fragility of these kinds of objects which during the survey require a contactless approach. During the presented research a collection of architectural models representing ancient Nubian temples from “Museo Egizio di Torino” had been digitalized using different techniques; in particular, the wooden maquette of the temple of El-Hilla has been acquired using a new structured light handheld laser scanner, the Stonex F6 SR, and applying a close-range photogrammetric approach. In this paper a comparison between the two approaches is proposed as regards acquisition workflow, final results and suitability as regards digitisation of objects belonging to movable heritage and museum collections.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.