ABSTRACT:The purpose of this paper is to discuss how much the phases of flight planning and the setting of the camera orientation can affect a UAVs photogrammetric survey. The test site chosen for these evaluations was the Rocca of San Silvestro, a medieval monumental castle near Livorno, Tuscany (Italy). During the fieldwork, different sets of data have been acquired using different parameters for the camera orientation and for the set up of flight plans. Acquisition with both nadiral and oblique orientation of the camera have been performed, as well as flights with different direction of the flight lines (related with the shape of the object of the survey). The different datasets were then processed in several blocks using Pix4D software and the results of the processing were analysed and compared. Our aim was to evaluate how much the parameters described above can affect the generation of the final products of the survey, in particular the product chosen for this evaluation was the point cloud.
The launch of the new iPad Pro by Apple in March 2020 generated high interest and expectations for different reasons; nevertheless, one of the new features that developers and users were interested in testing was the LiDAR sensor integrated into this device (and, later on, in the iPhone 12 and 13 Pro series). The implications of using this technology are mainly related to augmented and mixed reality applications, but its deployment for surveying tasks also seems promising. In particular, the potentialities of this miniaturized and low-cost sensor embedded in a mobile device have been assessed for documentation from the cultural heritage perspective—a domain where this solution may be particularly innovative. Over the last two years, an increasing number of mobile apps using the Apple LiDAR sensor for 3D data acquisition have been released. However, their performance and the 3D positional accuracy and precision of the acquired 3D point clouds have not yet been fully validated. Among the solutions available, as of September 2021, three iOS apps (SiteScape, EveryPoint, and 3D Scanner App) were tested. They were compared in different surveying scenarios, considering the overall accuracy of the sensor, the best acquisition strategies, the operational limitations, and the 3D positional accuracy of the final products achieved.
The use of unmanned aerial vehicles (UAVs) is nowadays a standard approach in several application fields. Researches connected with these systems cover several topics and the evolution of these platforms and their applications are rapidly growing. Despite the high level of automatization reached nowadays, there is still a phase of the overall UAVs’ photogrammetric pipeline that requires a high effort in terms of time and resources (i.e., the georeferencing phase). However, thanks to the availability of survey-grade GNSS (Global Navigation Satellite System) receivers embedded in the aerial platforms, it is possible to also enhance this phase of the processing by adopting direct georeferencing approaches (i.e., without using any ground control point and exploiting real time kinematic (RTK) positioning). This work investigates the possibilities offered by a multirotor commercial system equipped with a RTK-enabled GNSS receiver, focusing on the accuracy of the georeferencing phase. Several tests were performed in an ad-hoc case study exploiting different georeferencing solutions and assessing the 3D positional accuracies, thanks to a network of control points. The best approaches to be adopted in the field according to accuracy requirements of the final map products were identified and operational guidelines proposed accordingly.
Abstract. The main goal of this ongoing research is the evaluation of the iPad Pro built-in LiDAR sensor for large scale 3D rapid mapping. Different aspects have been considered from the architectural surveying perspective and several analyses were carried out focusing on the acquisition phase and the definition of best practices for data collection, the quantitative analysis on the acquired data and their 3D positional accuracy assessment, and the qualitative analysis of the achievable metric products. Despite this paper is a preliminary analysis and deeper studies in various application environment are necessary, the availability of a LiDAR sensor embedded in a tablet or mobile phone, appears promising for rapid surveying purposes. According to test outcomes, the sensor is able to rapidly acquire reliable 3D point clouds suitable for 1:200 architectural rapid mapping; the iPad Pro could represent an interesting novelty also thanks to its price (compared to standard surveying instruments), portability and limited time required both for data acquisition and processing.
<p><strong>Abstract.</strong> The recent seismic swarms, occurred in Italy since August 2016, outlined the importance of deepen Geomatics researches for the validation of new strategies aimed at rapid-mapping and documenting differently accessible and complex environments, as in urban contexts and damaged built heritage. In the emergency response, the crucial exploitation of technological advances should obtain and efficiently organize high-scale reliable geospatial data for the early warning, impact, and recovery phases. Fulfilling these issues, among others, the Copernicus EMS, has played by now an important role in immediate and extensive damage reconnaissance, as in the case of Centre Italy. Nevertheless, the use of remote sensing data is still affected by a problem of point-of-view, scale and detectable detail. Nadir images, airborne or satellite, in fact, strongly limited the confidence level of these products. The subjectivity of the operator involvement is still an open issue, both in the first fieldwork assessment, and in the following operational approach of interpretative damage detection and rapid mapping production. To overcome these limits, the introduction of UAV platforms for photogrammetric purposes, has proven to be a sustainable approach in terms of time savings, operators’ safety, reliability and accuracy of results: the nadir and oblique integration can provide large multiscale models, with the fundamental information related to the façades conditions. The presented research, conducted within the Central Italy earthquakes events, will focus on potentialities and limits of UAV photogrammetry in the two documented sites: Pescara del Tronto and Accumoli. Here, the aim is not limited to describe a series of strategies for georeferencing, blocks orientation and multitemporal co-registration solutions, but also to validate the implemented pipelines as a workflow that could be integrated in the operative intervention for emergency response in early impact activities. Thus, it would be possible to use this 3D metric products as a reference-data for significative improvements of reliability in typical visual inspection and mapping, flanking the traditional nadir airborne- or satellite-based products. The UAV acquisitions performed in two damaged villages are displayed, in order to underline the implication of the spatial information embedded in DSM reconstruction and 3D models, supporting more reliable damage assessments.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.