Although superficial scald (SS) is well characterized on apples, there are only a few insights concerning the influence that agronomic and management variability may have on the occurrence of this physiological disorder on pears. In this study, we aimed to improve our understanding of the effect of different preharvest factors on SS development using a multivariate statistical approach. Pears (Pyrus communis L.) cv “Abate Fetel” were picked during two consecutive seasons (2018-2019 and 2019-2020) from twenty-three commercial orchards from three growing areas (Modena, Ferrara, and Ravenna provinces) in the Emilia-Romagna region of Italy. Bioclimatic indices such as weather and soil, agronomic management such fertilization and irrigation, orchard features such as rootstock and training systems, and SS incidence were carried out at harvest and periodically postharvest in all producers. Two different storage scenarios (regular atmosphere and use of 1-MCP) were also evaluated. Our data in both seasons showed high heterogeneity between farms for SS symptoms after cold storage either in the regular atmosphere or with 1-MCP treatment. Nevertheless, in 2018, all the producers showed SS at the end of the storage season, but in 2019 some of them did not exhibit SS for up to 5 months. In fact, some preharvest factors changed considerably between the two seasons such as yield and weather conditions. Indeed, some factors seem to affect SS in both growing seasons. Some can increase its occurrences such as physiological and agronomical factors: high yields, late date of blooming, heavy downpours, improper irrigation management (low watering frequency and high volumes), nitrogen (included that deriving from organic matter), soil texture (presence of clay), orchard age, and canopy volume in relation to training system and rootstock. Others can decrease SS such as climatic and management factors: late harvest dates, rain, gibberellins, calcium, manure, absence of antihail nets or use of photoselective nets, and site (probably related to better soils toward the Adriatic coast). Initial preharvest variability is an important factor that modulates physiological plant stress and, subsequently, the SS after cold storage in “Abate Fetel” pears. Multivariate techniques could represent useful tools to identify reliable multiyear preharvest variables for SS control in pear fruit different batches.