Abstract-We present a study focused on constructing models of players for the major commercial title Tomb Raider: Underworld (TRU). Emergent self-organizing maps are trained on high-level playing behavior data obtained from 1365 players that completed the TRU game. The unsupervised learning approach utilized reveals four types of players which are analyzed within the context of the game. The proposed approach automates, in part, the traditional user and play testing procedures followed in the game industry since it can inform game developers, in detail, if the players play the game as intended by the game design. Subsequently, player models can assist the tailoring of game mechanics in real-time for the needs of the player type identified.
Analyzing telemetry data of player behavior in computer games is a topic of increasing interest for industry and research, alike. When applied to game telemetry data, pattern recognition and statistical analysis provide valuable business intelligence tools for game development. An important problem in this area is to characterize how player engagement in a game evolves over time. Reliable models are of pivotal interest since they allow for assessing the long-term success of game products and can provide estimates of how long players may be expected to keep actively playing a game. In this paper, we introduce methods from random process theory into game data mining in order to draw inferences about player engagement. Given large samples (over 250,000 players) of behavioral telemetry data from five different action-adventure and shooter games, we extract information as to how long individual players have played these games and apply techniques from lifetime analysis to identify common patterns. In all five cases, we find that the Weibull distribution gives a good account of the statistics of total playing times. This implies that an average players interest in playing one of the games considered evolves according to a non-homogeneous Poisson process. Therefore, given data on the initial playtime behavior of the players of a game, it becomes possible to predict when they stop playing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.