Our research focuses on Holocene tectonics in a broad area surrounding the junction between the active NW-SE trending Husavik-Flatey transform fault (HFF) and the N-S Gudfinnugja normal fault (GF), an exceptional example of onshore transform-ridge intersection. We mapped 637 minor and major faults, and measured the dip-slip and strike-slip offset components on the major faults. We also mapped 1016 individual fissures, as well as opening directions on the most reliable ones. The results indicate that this portion of the HFF comprises major right-stepping segments, with both normal and right-lateral strike-slip components, linked by local normal faults. The entire GF always shows pure dip-slip normal displacements, with a strong decrease in offset at the junction with the HFF. Fissure opening directions are in the range N45°-65°E along the HFF, N90°E along the GF, and N110°E within the area south of the HFF and west of the GF. Fault kinematics and fissure openings suggest a displacement field in good agreement with most of present-day GPS measurements, although our data indicate the possible long-term Holocene effects of the 2 superimposition of magma-related stresses on the regional tectonic stresses. The HFF and the GF work together as a structural system able to accommodate differential crustal block motion, and possibly past dyke intrusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.