Parks are essential public places and play a central role in urban livability. However, traditional methods of investigating their attractiveness, such as questionnaires and in situ observations, are usually time- and resource-consuming, while providing less transferable and only site-specific results. This paper presents an improved methodology of using social media (Twitter) data to extract spatial and temporal patterns of park visits for urban planning purposes, along with the sentiment of the tweets, focusing on frequent Twitter users. We analyzed the spatiotemporal park visiting behavior of more than 4000 users for almost 1700 parks, examining 78,000 tweets in London, UK. The novelty of the research is in the combination of spatial and temporal aspects of Twitter data analysis, applying sentiment and emotion extraction for park visits throughout the whole city. This transferable methodology thereby overcomes many of the limitations of traditional research methods. This study concluded that people tweeted mostly in parks 3–4 km away from their center of activity and they were more positive than elsewhere while doing so. In our analysis, we identified four types of parks based on their visitors’ spatial behavioral characteristics, the sentiment of the tweets, and the temporal distribution of the users, serving as input for further urban planning-related investigations.
Earthquakes and heavy rainfalls are the two leading causes of landslides around the world. Since they often occur across large areas, landslide detection requires rapid and reliable automatic detection approaches. Currently, deep learning (DL) approaches, especially different convolutional neural network and fully convolutional network (FCN) algorithms, are reliably achieving cutting-edge accuracies in automatic landslide detection. However, these successful applications of various DL approaches have thus far been based on very high resolution satellite images (e.g., GeoEye and WorldView), making it easier to achieve such high detection performances. In this study, we use freely available Sentinel-2 data and ALOS digital elevation model to investigate the application of two well-known FCN algorithms, namely the U-Net and residual U-Net (or so-called ResU-Net), for landslide detection. To our knowledge, this is the first application of FCN for landslide detection only from freely available data. We adapt the algorithms to the specific aim of landslide detection, then train and test with data from three different case study areas located in Western Taitung County (Taiwan), Shuzheng Valley (China), and Eastern Iburi (Japan). We characterize three different window size sample patches to train the algorithms. Our results also contain a comprehensive transferability assessment achieved through different training and testing scenarios in the three case studies. The highest f1-score value of 73.32% was obtained by ResU-Net, trained with a dataset from Japan, and tested on China’s holdout testing area using the sample patch size of 64 × 64 pixels.
Recent landslide detection studies have focused on pixel-based deep learning (DL) approaches. In contrast, intuitive annotation of landslides from satellite imagery is based on distinct features rather than individual pixels. This study examines the feasibility of the integration framework of a DL model with rule-based object-based image analysis (OBIA) to detect landslides. First, we designed a ResU-Net model and then trained and tested it in the Sentinel-2 imagery. Then we developed a simple rule-based OBIA with only four rulesets, applying it first to the original image dataset and then to the same dataset plus the resulting ResU-Net heatmap. The value of each pixel in the heatmap refers to the probability that the pixel belongs to either landslide or non-landslide classes. Thus, we evaluate three scenarios: ResU-Net, OBIA, and ResU-Net-OBIA. The landslide detection maps from three different classification scenarios were compared against a manual landslide inventory map using thematic accuracy assessment metrics: precision, recall, and f1-score. Our experiments in the testing area showed that the proposed integration framework yields f1-score values 8 and 22 percentage points higher than those of the ResU-Net and OBIA approaches, respectively.
The increasing availability of trajectory recordings has led to the mining of a massive amount of historical track data, allowing for a better understanding of travel behaviors by revealing meaningful motion patterns. In the context of human mobility analysis, the problem of motion prediction assumes a central role and is beneficial for a wide range of applications, including for touristic purposes, such as personalized services or targeted recommendations, and sustainability studies related to crowd management and resource redistribution. This paper tackles a particular case of the trajectory prediction problem, focusing on large-scale mobility traces of short-term foreign tourists. These sparse trajectories, short and non-repetitive, lack spatial and temporal regularity, making prediction analysis based on individual historical motion data unreliable. To face this issue, we hereby propose a deep learning-based approach, taking into account the collective mobility of tourists over the territory. The underlying semantics of motion patterns are captured by means of a long short-term memory (LSTM) neural network model trained on pre-processed location sequences, aiming to predict the next visited place in the trajectory. We tested the methodology on a real-world big dataset, demonstrating its higher feasibility with respect to traditional approaches.
The rapid growth of positioning technology allows tracking motion between places, making trajectory recordings an important source of information about place connectivity, as they map the routes that people commonly perform. In this paper, we utilize users’ motion traces to construct a behavioral representation of places based on how people move between them, ignoring geographical coordinates and spatial proximity. Inspired by natural language processing techniques, we generate and explore vector representations of locations, traces and visitors, obtained through an unsupervised machine learning approach, which we generically named motion-to-vector (Mot2vec), trained on large-scale mobility data. The algorithm consists of two steps, the trajectory pre-processing and the Word2vec-based model building. First, mobility traces are converted into sequences of locations that unfold in fixed time steps; then, a Skip-gram Word2vec model is used to construct the location embeddings. Trace and visitor embeddings are finally created combining the location vectors belonging to each trace or visitor. Mot2vec provides a meaningful representation of locations, based on the motion behavior of users, defining a direct way of comparing locations’ connectivity and providing analogous similarity distributions for places of the same type. In addition, it defines a metric of similarity for traces and visitors beyond their spatial proximity and identifies common motion behaviors between different categories of people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.