A family of (ferrocenyl)indenes, (2-ferrocenyl)indene, (2-ferrocenyl)tetramethylindene, (2-ferrocenyl)hexamethylindene, (3-ferrocenyl)indene, and (3-ferrocenyl)hexamethylindene, and the corresponding
monooxidized cations have been prepared. The results of a structural and spectroelectrochemical study
are discussed. The availability of pairs of isomers with known geometries and differently methylated
indenes allowed the detailed investigation of how slight geometric and electronic modifications affect
their physical properties. The molecular structures have been determined by X-ray diffraction and compared
with the fully optimized structures calculated with state-of-the-art DFT methods. Calculated and
crystallographic structures agree in establishing the dependence of the orientation of the indene moiety
and the ferrocenyl cyclopentadienyl rings on the degree of methylation. The UV−vis spectra and in
particular the appearance upon oxidation of a new near-IR absorption, whose energy and intensity increase
with the degree of methylation and cyclopentadienyl-indene planarity, are rationalized in the framework
of the Hush theory and at quantum chemistry level by DFT and TD-DFT calculations.
The extent of metal-metal electronic coupling was quantified for a series of syn and anti stereoisomers of (FeCp)(2)-, (RhL(2))(2)- and (FeCp)(RhL(2))- (L(2)=1,5-cyclooctadiene (cod), L=CO) as-indacenediide mixed-valent ions by spectroelectrochemical and DFT studies. The effect of the syn/anti orientation of the metal units with respect to the planar aromatic ligand indicates that electron transfer occurs through the bridge rather than through space. The nature of the metal was found to be crucial: while homobimetallic diiron species are localised valence-trapped ions (Class II), the dirhodium analogues are almost delocalised mixed-valent ions (borderline and Class III). Finally, despite their redox asymmetry, even in the heterobimetallic iron-rhodium as-indacenediide complexes, strong metal-metal coupling is present. In fact, oxidation of the iron centre is accompanied by electron transfer from rhodium to iron and formation of a reactive 17-electron rhodium site. syn and anti Fe-Rh as-indacenediide complexes are rare examples of heterobimetallic systems which can be classified as borderline Class II/Class III species.
A twisted intramolecular charge-transfer (TICT) process has been identified in (2-ferrocenyl)indene. This photochemical process explains the anti-Kasha's rule fluorescence emission observed for this system. Experimental and model investigations on (2-ferrocenyl)tetramethylindene and (2-ferrocenyl)-hexamethylindene were also performed, in order to evaluate the effect of a steric hindrance on the TICT mechanism. The energy of the lowest main excited states was computed with a TD-DFT approach, as a function of the rotation of the dihedral angle between the indene and the cyclopentadienyl planes. To the best of our knowledge, this is the first example of TICT generated by metal-to-ligand charge transfer (MLCT) in a ferrocene-containing complex and, more generally, the first case of complexes in which a metal center is directly involved.
In this review, the properties of the most significant examples of multi(ferrocenyl) cations containing a number of ferrocenyl units from two to six are discussed and the results are compared with the outcomes of some of our recent studies on conjugated ferrocenyl complexes, in order to give an overview of how the nature of the bridging ligand, the distance between the redox-active centres, and the medium affect the electronic and electrostatic properties of the molecules.
Two series of 3(10)-helical peptides of different lengths and rigidity, based on the strongly foldameric α-aminoisobutyric acid and containing a terminal ferrocenyl unit, have been synthesized. Oxidation-state sensitive spectroscopic tags of helical peptides, the N-H groups, allowed mapping of the charge delocalization triggered by oxidation of the terminal ferrocenyl moiety and were monitored by IR spectroelectrochemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.