Genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs) belong to a novel heterogeneous class of ncRNAs that includes thousands of different species. lncRNAs have crucial roles in gene expression control during both developmental and differentiation processes, and the number of lncRNA species increases in genomes of developmentally complex organisms, which highlights the importance of RNA-based levels of control in the evolution of multicellular organisms. In this Review, we describe the function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development.
SummaryCircular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes.
MicroRNAs play important roles in cell differentiation by acting as translational inhibitors of specific target genes. Here we show that human granulocytic differentiation is controlled by a regulatory circuitry involving miR-223 and two transcriptional factors, NFI-A and C/EBPalpha. The two factors compete for binding to the miR-223 promoter: NFI-A maintains miR-223 at low levels, whereas its replacement by C/EBPalpha, following retinoic acid (RA)-induced differentiation, upregulates miR-223 expression. The competition by C/EBPalpha and the granulocytic differentiation are favored by a negative-feedback loop in which miR-223 represses NFI-A translation. In line with this, both RNAi against NFI-A and ectopic expression of miR-223 in acute promyelocytic leukemia (APL) cells enhance differentiation, whereas miR-223 knockdown inhibits the differentiation response to RA. Altogether, our data indicate that miR-223 plays a crucial role during granulopoiesis and point to the NFI-A repression as an important molecular pathway mediating gene reprogramming in this cell lineage.
The past year has seen dramatic changes in our understanding of ribosome synthesis, fuelled largely by advances in proteomic analysis. It is now possible to outline the pathway of ribosome assembly, which is highly dynamic and involves a remarkable separation of the factors involved in the synthesis of the 40S and 60S ribosomal subunits. Around 140 identified, non-ribosomal proteins are currently implicated in post-transcriptional ribosome synthesis in yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.