aWe study the kinetics of the liquid-liquid phase separation (LLPS) and its arrest in protein solutions exhibiting a lower critical solution temperature (LCST) phase behavior using the combination of ultrasmall angle X-ray scattering (USAXS) and very-small angle neutron scattering (VSANS). We employ a previously established model system consisting of bovine serum albumin (BSA) solutions with YCl 3 . We follow the phase transition from sub-second to 10 4 s upon an off-critical temperature jump. After a temperature jump, the USAXS profiles exhibit a peak that grows in intensity and shifts to lower q values
Artificial neural networks trained with simulated data are shown to correctly and quickly determine film parameters from experimental X-ray reflectivity curves.
Neutron and x-ray reflectometry (NR and XRR) are powerful techniques to investigate the structural, morphological and even magnetic properties of solid and liquid thin films. While neutrons and x-rays behave similarly in many ways and can be described by the same general theory, they fundamentally differ in certain specific aspects. These aspects can be exploited to investigate different properties of a system, depending on which particular questions need to be answered. Having demonstrated the general applicability of neural networks to analyze XRR and NR data before (Greco et al 2019 J. Appl. Cryst.
52 1342), this study discusses challenges arising from certain pathological cases as well as performance issues and perspectives. These cases include a low signal-to-noise ratio, a high background signal (e.g. from incoherent scattering), as well as a potential lack of a total reflection edge (TRE). By dynamically modifying the training data after every mini batch, a fully-connected neural network was trained to determine thin film parameters from reflectivity curves. We show that noise and background intensity pose no significant problem as long as they do not affect the TRE. However, for curves without strong features the prediction accuracy is diminished. Furthermore, we compare the prediction accuracy for different scattering length density combinations. The results are demonstrated using simulated data of a single-layer system while also discussing challenges for multi-component systems.
The exchange of ions
in hybrid organic–inorganic perovskites
with the general formula APbX3 (A = MA, FA; X = I, Cl,
Br) is studied in five different systems using in situ real-time grazing
incident X-ray diffraction (GIXD). In systems where the organic cation
is exchanged, we find a continuous shift of the lattice parameter.
The relative shift compared to the pure materials is used to quantify
the exchange. Whether or not a conversion is possible, as well as
the amount of exchanged cations, depends on the halide used. In the
case of the interconversion of MAPbI3 and MAPbCl3, we observe a decay of the diffraction peaks of the original perovskite
and the emergence of new peaks corresponding to the structure with
the alternative halide. Moreover, we determined the relevant time
scales of the growth and decay of the perovskite structures.
The development of systems capable of responding to environmental changes, such as humidity, requires the design and assembly of highly sensitive and efficiently transducing elements. Such a challenge can be mastered only by disentangling the role played by each component of the responsive system, thus ultimately achieving high performance by optimizing the synergistic contribution of all functional elements. Here, we designed and synthesized a novel [1]benzothieno [3,2-b][1]benzothiophene derivative equipped with hydrophilic oligoethylene glycol lateral chains (OEG-BTBT) that can electrically transduce subtle changes in ambient humidity with high current ratios (>10 4 ) at low voltages (2 V), reaching state-of-the-art performance. Multiscale structural, spectroscopical, and electrical characterizations were employed to elucidate the role of each device constituent, viz., the active material's BTBT core and OEG side chains, and the device interfaces. While the BTBT molecular core promotes the self-assembly of (semi)conducting crystalline films, its OEG side chains are prone to adsorb ambient moisture. These chains act as hotspots for hydrogen bonding with atmospheric water molecules that locally dissociate when a bias voltage is applied, resulting in a mixed electronic/protonic long-range conduction throughout the film. Due to the OEG-BTBT molecules' orientation with respect to the surface and structural defects within the film, water molecules can access the humidity-sensitive sites of the SiO 2 substrate surface, whose hydrophilicity can be tuned for an improved device response. The synergistic chemical engineering of materials and interfaces is thus key for designing highly sensitive humidity-responsive electrical devices whose mechanism relies on the interplay of electron and proton transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.