Artificial neural networks trained with simulated data are shown to correctly and quickly determine film parameters from experimental X-ray reflectivity curves.
In this paper, we present a collection of machine learning assisted distributed fiber optic sensors (DFOS) for applications in the field of infrastructure monitoring. We employ advanced signal processing based on artificial neural networks (ANNs) to enhance the performance of the dynamic DFOS for strain and vibration sensing. Specifically, ANNs in comparison to conventional and computationally expensive correlation and linearization algorithms, deliver lower strain errors and speed up the signal processing allowing real time strain monitoring. Furthermore, convolutional neural networks (CNNs) are used to denoise the dynamic DFOS signal and enable useable sensing lengths of up to 100 km. Applications of the machine learning assisted dynamic DFOS in road traffic and railway infrastructure monitoring are demonstrated. In the field of static DFOS, machine learning is applied to the well-known Brillouin optical frequency domain analysis (BOFDA) system. Specifically, CNN are shown to be very tolerant against noisy spectra and contribute towards significantly shorter measurement times. Furthermore, different machine learning algorithms (linear and polynomial regression, decision trees, ANNs) are applied to solve the well-known problem of cross-sensitivity in cases when temperature and humidity are measured simultaneously. The presented machine learning assisted DFOS can potentially contribute towards enhanced, cost effective and reliable monitoring of infrastructures.
Machine learning is playing an increasing role in the discovery of new materials and may also facilitate the search for optimum growth conditions for crystals and thin films. Here, we perform kinetic Monte-Carlo simulations of sub-monolayer growth. We consider a generic homoepitaxial growth scenario that covers a wide range of conditions with different diffusion barriers (0.4–0.55 eV) and lateral binding energies (0.1–0.4 eV). These simulations are used as a training data set for a convolutional neural network that can predict diffusion barriers and binding energies. Specifically, a single Monte-Carlo image of the morphology is sufficient to determine the energy barriers with an accuracy of approximately 10 meV and the neural network is tolerant to images with noise and lower than atomic-scale resolution. We believe this new machine learning method will be useful for fundamental studies of growth kinetics and growth optimization through better knowledge of microscopic parameters.
We report, to our knowledge for the first time, on distributed relative humidity sensing in silica polyimide-coated optical fibers using Brillouin optical frequency domain analysis (BOFDA). Linear regression, which is a simple and well-interpretable algorithm in machine learning and statistics, is utilized. The algorithm is trained using as features the Brillouin frequency shifts and linewidths of the fiber’s multipeak Brillouin spectrum. To assess and improve the effectiveness of the regression algorithm, we make use of machine learning concepts to estimate the model’s uncertainties and select the features that contribute most to the model’s performance. In addition to relative humidity, the model is also able to simultaneously provide distributed temperature information addressing the well-known cross-sensitivity effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.