This paper describes the contents of the new Hydrogeological Map of the City of Rome (1:50,000 scale). The map extends to the entire municipality (1285 km 2 ) and is based on both the most recent scientific studies on the groundwater field and new survey activities carried out in order to fill the data gaps in several areas of the examined territory. The map is the result of a combination of different urban groundwater expertise and Geographic Information System (GIS)-based mapping performed using the most recent available data and has been produced with the intention of furnishing the City of Rome with the most recent and updated information regarding groundwater.
ARTICLE HISTORY
This study is focused on the analysis of seasonal and annual variability in groundwater levels of the coastal aquifer of Castelporziano Presidential Estate, a protected area of 59 Km2 located in the periphery of Rome. A comparison with the local trends of rainfall at “Castello” gauging station at different time scales (monthly, seasonal and annual) has been carried out. The results highlight differences between the coastal area and eastern and northern sector of the Estate. Indeed, the seasonal effect due to local meteoric recharge is direct and regular during the year in the coastal area in respect to the eastern and northern sectors of the Estate. Moreover, annual steady regime and multi-year trend of groundwater levels suggest the contribution from the adjacent volcanic aquifer of Albani Hills. In the latter case, the regional circulation of groundwater is affected by the effects of intense withdrawals. The maintenance of the monitoring network will allow to define the flow paths of the groundwater that characterize the coastal aquifer of Castelporziano.
Groundwater is the main and safest source of water used for drinking purposes in many urban and rural communities worldwide. A deep knowledge of aquifer systems in terms of quality, vulnerability and renewability is fundamental to preserving groundwater resources. Thanks to contributions by different members of Water Alliance in synergy with Sapienza University, during November 2019 a multiisotopic regional scale analysis was carried out on groundwater tapped for drinking purposes in a wide area of the Lombardy Region. The study aimed to improve knowledge of recharge mechanisms, the groundwater’s relative age, and the impact of human activities on groundwater quality. Each Water Alliance supplier selected some wells and springs drawing water from different aquifer groups and distributed from north to south, for a total of 121 samples. Groundwater stable isotope analyses were performed on all the monitoring points, while tritium, nitrogen isotopes (15N and 18O in nitrates), sulphate isotopes (34S and 18O) and 13C isotope in Dissolved Inorganic Carbon (DIC) were analysed in selected monitoring wells based on previous data and major ion concentration results. The results confirm the key role of a multi-isotopic approach in defining aquifer recharge processes, relative groundwater age and the origin of pollutants, offering a useful tool to highlight local issues which could be investigated in depth by each water supplier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.