Ultrasonic surface rolling process (USRP) is a novel surface severe plastic deformation (SPD) method that integrates ultrasonic impact peening (UIP) and deep rolling (DR) to enhance the surface integrity and surface mechanical properties of engineering materials. USRP can induce gradient nanostructured surface (GNS) layers on the substrate, providing superior mechanical properties, thus preventing premature material failure. Herein, a comprehensive overview of current-state-of-the art USRP is provided. More specifically, the effect of the USRP on a broad range of materials exclusively used for aerospace, automotive, nuclear, and chemical industries is explained. Furthermore, the effect of USRP on different mechanical properties, such as hardness, tensile, fatigue, wear resistance, residual stress, corrosion resistance, and surface roughness are summarized. In addition, the effect of USRP on grain refinement and the formation of gradient microstructure is discussed. Finally, this study elucidates the application and recent advances of the USRP process.
The eventual material degradation of steel components in bio-implant, marine, and high-temperature applications is a critical issue that can have widespread negative ramifications from a safety and economic point of view. Stemming from their tribological, corrosion, and erosion-based properties, there is an increasing need to address these issues effectively. As one solution, surface processing techniques have been proposed to improve these properties. However, common techniques tend to suffer from issues spanning from their practicality to their high costs and negative environmental impacts. To address these issues, friction-stir-processing (FSP) has been one technique that has been increasingly utilized due to its cost effective, non-polluting nature. By inducing large amounts of strain and plastic deformation, dynamic recrystallization occurs which can largely influence the tribological, corrosion, and erosion properties via surface hardening, grain refinement, and improvement to passive layer formation. This review aims to accumulate the current knowledge of steel FSP and to breakdown the key factors which enable its metallurgical improvement. Having this understanding, a thorough analysis of these processing variables in relation to their tribological, corrosion, and erosion properties is presented. We finally then prospect future directions for this research with suggestions on how this research can continue to expand.
Recently, additive manufacturing (AM) has gained much traction due to its processing advantages over traditional manufacturing methods. However, there are limited studies which focus on process optimization for surface quality of AM materials, which can dictate mechanical, thermal, and tribological performance. For example, in heat-transfer applications, increased surface quality is advantageous for reducing wear rates of vibrating tubes as well as increasing the heat-transfer rates of contacting systems. Although many post-processing and in situ manufacturing techniques are used in conjunction with AM techniques to improve surface quality, these processes are costly and time-consuming compared to optimized processing techniques. With improved as-built surface quality, particles tend to be better fused, which allows for greater wear resistance from contacting tube surfaces. Additionally, improved surface quality can reduce the entropy and exergy generated from flowing fluids, in turn increasing the thermodynamic efficiency of heat-transferring devices. This review aims to summarize the process-optimizing methods used in AM for metal-based heat exchangers and the importance of as-built surface quality to its performance and long-term energy conservation. The future directions and current challenges of this field will also be covered, with suggestions on how research in this topic can be improved.
Ultrasonic nanocrystal surface modification (UNSM) is a unique, mechanical, impact-based surface severe plastic deformation (S2PD) method. This newly developed technique finds diverse applications in the aerospace, automotive, nuclear, biomedical, and chemical industries. The severe plastic deformation (SPD) during UNSM can generate gradient nanostructured surface (GNS) layers with remarkable mechanical properties. This review paper elucidates the current state-of-the-art UNSM technique on a broad range of engineering materials. This review also summarizes the effect of UNSM on different mechanical properties, such as fatigue, wear, and corrosion resistance. Furthermore, the effect of USNM on microstructure development and grain refinement is discussed. Finally, this study explores the applications of the UNSM process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.