We explore extensions to SL(n, C)-Chern-Simons theory of some results obtained for SU(n)-Chern-Simons theory via the asymptotic properties of the Hitchin connection and its relation to Toeplitz operators developed previously by the first named author. We define a formal Hitchin-Witten connection for the imaginary part s of the quantum parameter t = k + is and investigate the existence of a formal trivialisation. After reducing the problem to a recursive system of differential equations, we identify a cohomological obstruction to the existence of a solution. We explicitly find one for the first step, in the specific case of an operator of order 0, and show in general the vanishing of a weakened version of the obstruction. We also find a solution of the whole recursion in the case of a surface of genus 1. * Supported in part by the center of excellence grant "Centre for quantum geometry of Moduli Spaces" DNRF95, from the Danish National Research Foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.