Since convolutional neural networks (CNNs) have revolutionized the image processing field, they have been widely applied in the audio context. A common approach is to convert the one-dimensional audio signal time series to twodimensional images using a time-frequency decomposition method. Also it is common to discard the phase information. In this paper, we propose to map one-dimensional audio waveforms to two-dimensional images using space filling curves (SFCs). These mappings do not compress the input signal, while preserving its local structure. Moreover, the mappings benefit from progress made in deep learning and the large collection of existing computer vision networks. We test eight SFCs on two keyword spotting problems. We show that the Z curve yields the best results due to its shift equivariance under convolution operations. Additionally, the Z curve produces comparable results to the widely used mel frequency cepstral coefficients across multiple CNNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.