A new technique for the long-term ambulatory detection of enterogastric and nonacid gastroesophageal reflux has been conceived, developed, and validated. It is based on the use of a fiberoptic sensor that utilizes the optical properties of bile. In vitro studies have shown good precision, good stability, sensitivity of 2.5 mumol/liter bilirubin concentration, as well as a useful working range of 2.5-100 mumol/liter bilirubin concentration. In vivo studies have been performed in 29 subjects. Simultaneous gastric aspirations have allowed a comparison of fiberoptic system measurements both with spectrophotometric analysis and bile acid concentrations of corresponding gastric juice samples. Linear correlations were shown between fiberoptic assessment and both spectrophotometric and bile acid concentration findings (P < 0.01). Simultaneous assessment of reflux with the fiberoptic system and cholescintigraphy has shown a 92.9% concordance as regards the presence or absence of reflux. Present results imply that the fiberoptic system is an important tool for the understanding of the clinical relevance of enterogastric and nonacid gastroesophageal reflux.
A procedure for the determination of the system matrix in single photon emission tomography (SPECT) is described which uses the conjugate gradient reconstruction technique in order to take into account the variable system resolution of a camera equipped with parallel-hole collimators. The procedure involves the acquisition of the system line spread functions (LSF) in the region occupied by the object to be studied. Those data are used to generate a set of weighting factors based on the assumption that the LSFs of the collimated camera are of Gaussian shape with the full width at half maximum (FWHM) linearly dependent on the source depth in the span of image space. The factors are stored on a disc file for subsequent use in the reconstruction process. Afterwards the reconstruction is performed using the conjugate gradient method with the system matrix modified by the incorporation of these precalculated factors in order to take into account the variable geometrical system response. The set of weighting factors is regenerated whenever the acquisition conditions are changed (collimator, radius of rotation). In the case of an ultra high resolution (UHR) collimator 2000 weighting factors need to be calculated. The modification of the system matrix for the geometrical response allows the number of iterations to increase, considerably improving image definition without the appearance of noise artifacts. Moreover, phantom studies show that the number of iterations is less critical because of improved stability in the convergence to the solution. For brain studies of patients 10-15 iterations are usually performed. Studies with a single line source give a value between 7 and 8 mm for the FWHM of the point spread function (PSF) when the conjugate gradient method with modified system matrix is used on data acquired with a UHR collimator, whereas without the modification of the system matrix the result is 9 mm FWHM, if filtered backprojection (FBP) is used with the same filter as in the clinical studies the result is 15 mm FWHM. The results of this work show that proper definition of the system matrix using conjugate gradients influences the quality of the reconstruction remarkably. Nevertheless, further work has to be done in order to assess to what extent the system matrix is ill-conditioned and, eventually, to define a suitable regularization technique.
Until recently, PET was regarded as a luxurious way of performing myocardial perfusion scintigraphy, with excellent image quality and diagnostic capabilities that hardly justified the additional cost and procedural effort. Quantitative perfusion PET was considered a major improvement over standard qualitative imaging, because it allows the measurement of parameters not otherwise available, but for many years its use was confined to academic and research settings. In recent years, however, several factors have contributed to the renewal of interest in quantitative perfusion PET, which has become a much more readily accessible technique due to progress in hardware and the availability of dedicated and user-friendly platforms and programs. In spite of this evolution and of the growing evidence that quantitative perfusion PET can play a role in the clinical setting, there are not yet clear indications for its clinical use. Therefore, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, decided to examine the current literature on quantitative perfusion PET to (1) evaluate the rationale for its clinical use, (2) identify the main methodological requirements, (3) identify the remaining technical difficulties, (4) define the most reliable interpretation criteria, and finally (5) tentatively delineate currently acceptable and possibly appropriate clinical indications. The present position paper must be considered as a starting point aiming to promote a wider use of quantitative perfusion PET and to encourage the conception and execution of the studies needed to definitely establish its role in clinical practice.
Dip-MBF confirms its role as potent predictor of outcome in HCM. However, the threshold for prediction in a contemporary cohort is higher than that reported in earlier studies. Dip-MBF impairment in the lateral wall, possibly reflecting diffuse disease extending to non-hypertrophic regions, is a sensitive predictor of mortality in HCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.