Gene-encoded antimicrobial peptides are an important component of host defense in animals ranging from insects to mammals. They do not target specific molecular receptors on the microbial surface, but rather assume amphipathic structures that allow them to interact directly with microbial membranes, which they can rapidly permeabilize. They are thus perceived to be one promising solution to the growing problem of microbial resistance to conventional antibiotics. A particularly abundant and widespread class of antimicrobial peptides are those with amphipathic, alpha-helical domains. Due to their relatively small size and synthetic accessibility, these peptides have been extensively studied and have generated a substantial amount of structure-activity relationship (SAR) data. In this review, alpha-helical antimicrobial peptides are considered from the point of view of six interrelated structural and physicochemical parameters that modulate their activity and specificity: sequence, size, structuring, charge, amphipathicity, and hydrophobicity. It begins by providing an overview of how these vary in peptides from different natural sources. It then analyzes how they relate to the currently accepted model for the mode of action of alpha-helical peptides, and discusses what the numerous SAR studies that have been carried out on these compounds and their analogues can tell us. A comparative analysis of the many alpha-helical, antimicrobial peptide sequences that are now available then provides further information on how these parameters are distributed and interrelated. Finally, the systematic variation of parameters in short model peptides is used to throw light on their role in antimicrobial potency and specificity. The review concludes with some considerations on the potentials and limitations for the development of alpha-helical, antimicrobial peptides as antiinfective agents.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.
An important class of cytolytic antimicrobial peptides (AMPs) assumes an amphipathic, alpha-helical conformation that permits efficient interaction with biological membranes. Host defence peptides of this type are widespread in nature, and numerous synthetic model AMPs have been derived from these or designed de novo based on their characteristics. In this review we provide an overview of the 'sequence template' approach which we have used to design potent artificial helical AMPs, to guide structure-activity relationship studies aimed at their optimization, and to help identify novel natural AMP sequences. Combining this approach with the rational use of natural and non-proteinogenic amino acid building blocks has allowed us to probe the individual effects on the peptides' activity of structural and physico-chemical parameters such as the size, propensity for helical structuring, amphipathic hydrophobicity, cationicity, and hydrophobic or polar sector characteristics. These studies furthermore provided useful insights into alternative modes of action for natural membrane-active helical peptides.
Antimicrobial peptides (AMPs) that assume an amphipathic alpha helical structure are widespread in nature. Their activity depends on several parameters including the sequence, size, degree of structure formation, cationicity, hydrophobicity and amphipathicity. The analysis of numerous natural AMPs provided representative values for these parameters and led to a sequence template with which to generate potent artificial lead AMPs. Sequences were then varied in a rational manner, using both natural and nonproteinogenic amino acids, to probe the individual roles of each parameter in modulating biological activity. A high cationicity combined with a stabilized amphipathic alpha helical structure conferred enhanced cidal activity towards all the cell types considered, and was a requirement for Gram-positive bacteria and fungi. An elevated helicity also correlated with increased hemolytic activity. The structural requirements for activity against several Gram-negative bacteria were instead considerably less stringent, so that it persisted in peptides in which formation of a helical structure and/or amphipathicity were impeded. Either a reduced charge or a reduced hydrophobicity resulted in generally inactive peptides. These observations, combined with the kinetics of bacterial membrane permeabilization and time-killing are discussed in terms of currently accepted models of action for this type of peptide. The simple guidelines obtained in this study allowed the design of highly active shortened AMPs and may be generally useful in the development of this type of peptides as anti-infective agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.