The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.
Binding of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin (H2TMPyP4+) and its zinc complex (ZnTMPyP4+) to DNA is demonstrated by their coelectrophoresis and by absorption and fluorescence spectroscopic methods. Topoisomerisation of pBR322 DNA shows that H2TMPyP4+ unwinds DNA as efficiently as ethidium bromide showing that it intercalates at many sites. ZnTMPyP4+ may cause limited unwinding. Marked changes in the fluorescence spectra of the porphyrins are found in the presence of DNA. The fluorescence intensity of either H2TMPyP4+ or ZnTMPyP4+ is enhanced in the presence of poly (d(A-T)), whereas in the presence of poly (d(G-C] the fluorescence intensity of ZnTMPyP4+ is only slightly affected and that of H2TMPyP4+ markedly reduced. Both the porphyrins photosensitize the cleavage of DNA in aerated solution upon visible light irradiation.
The sequence of a 1409 base pair restriction fragment containing the B. subtilis gene for (1-3), (1-4)-beta-D-glucan endoglucanase is reported. The gene is encoded in a 726 base pair segment. The deduced amino acid sequence of the protein has a hydrophobic signal peptide at the NH2-terminus similar to those found in five other secreted proteins from Bacillus. The gene is preceded by a sequence resembling promoters for the vegetative B. subtilis RNA polymerase. This is followed by a sequence resembling a B. subtilis ribosome binding site nine nucleotides before the first codon of the gene. Two sequences, one before and one after the gene, can be arranged in secondary structures similar to transcriptional terminators. There is also a short open reading frame coding for a hydrophobic protein on the minus strand just upstream from the beta-glucanase gene. A possible role for this gene in the control of expression of beta-glucanase is suggested.
The excited state of the lf4,5,8-tetra-azaphenanthrene complex, [Ru(TAP)312+, which unlike [ R ~( p h e n ) ~] 2 + (phen = 1 ,lo-phenanthroline) or [Ru(bipy)#+ (bipy = 2,2'-bipyridyl) is strongly quenched upon binding to poly[d(G-C)], is found to be much more effective than either [Ru(phen)#+ or [ R ~( b i p y ) ~l z + in causing cleavage of the DNA backbone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.