Abstract-Liquid-cooling using microchannel heat sinks etched on silicon dies is seen as a promising solution to the rising heat fluxes in two-dimensional and stacked three-dimensional integrated circuits. Development of such devices requires accurate and fast thermal simulators suitable for early-stage design. To this end, we present 3D-ICE, a compact transient thermal model (CTTM), for liquid-cooled ICs. 3D-ICE was first advanced incorporating the 4-resistor model-based CTTM (4RM-based CTTM). Later, it was enhanced to speed up simulations and to include complex heat sink geometries such as pin fins using the new 2 resistor model (2RM-based CTTM). In this paper, we extend the 3D-ICE model to include liquid-cooled ICs with multi-port cavities, i.e., cavities with more than one inlet and one outlet ports, and non-straight microchannels. Simulation studies using a realistic 3D multiprocessor system-on-chip (MPSoC) with a 4-port microchannel cavity highlight the impact of using 4-port cavity on temperature and also demonstrate the superior performance of 2RM-based CTTM compared to 4RM-based CTTM. We also present an extensive review of existing literature and the derivation of the 3D-ICE model, creating a comprehensive study of liquid-cooled ICs and their thermal simulation from the perspective of computer systems design. Finally, the accuracy of 3D-ICE has been evaluated against measurements from a real liquid-cooled 3D-IC, which is the first such validation of a simulator of this genre. Results show strong agreement (average error < ), demonstrating that 3D-ICE is an effective tool for early-stage thermal-aware design of liquid-cooled 2D-/3D-ICs.
Abstract-With the rising challenges in heat removal in integrated circuits (ICs), the development of thermal-aware computing architectures and run-time management systems has become indispensable to the continuation of IC design scaling. These thermal-aware design technologies of the future strongly depend on the availability of efficient and accurate means for thermal modeling and analysis. These thermal models must have not only the sufficient accuracy to capture the complex mechanisms that regulate thermal diffusion in ICs, but also a level of abstraction that allows for their fast execution for design space exploration. In this paper, we propose an innovative thermal modeling approach for full-chips that can handle the scalability problem of transient heat flow simulation in large 2-D/3-D multiprocessor ICs. This is achieved by parallelizing the computation-intensive task of transient temperature tracking using neural networks and exploiting the computational power of massively parallel graphics processing units. Our results show up to 35× run-time speedup compared to state-of-the-art IC thermal simulation tools while keeping the error lower than 1°C. Speedups scale with the size of the 3-D multiprocessor ICs and our proposed method serves as a valuable design space exploration tool.
Chip designers place on-chip sensors to measure local temperatures, thus preventing thermal runaway situations in multicore processing architectures. However, thermal characterization is directly dependent on the number of placed sensors, which should be minimized, while guaranteeing full detection of all hot-spots and worst case temperature gradient. In this paper, we present EigenMaps: a new set of algorithms to recover precisely the overall thermal map from a minimal number of sensors and a near-optimal sensor allocation algorithm. The proposed methods are stable with respect to possible temperature sensor calibration inaccuracies, and achieve significant improvements compared to the state-of-the-art. In particular, we estimate an entire thermal map for an industrial 8-core industrial design within 1 C of accuracy with just four sensors. Moreover, when the measurements are corrupted by noise (SNR of 15 dB), we can achieve the same precision only with 16 sensors.
Vertical integration is a promising solution to further increase the performance of future ICs, but such 3D ICs present complex thermal issues that cannot be solved by conventional cooling techniques. Interlayer liquid cooling has been proposed to extract the heat accumulated within the chip. However, the development of liquid-cooled 3D ICs strongly relies on the availability of accurate and fast thermal models.In this work, we present a novel thermal model for 3D ICs with interlayer liquid cooling that exploits the neural network theory. Neural Networks can be trained to mimic with high accuracy the thermal behavior of 3D ICs and their implementation can efficiently exploit the massive computational power of modern parallel architectures such as graphic processing units. We have designed an ad-hoc Neural Network model based on pertinent physical considerations of how heat propagates in 3D IC architectures, as well as exploring the most optimal configuration of the model to improve the simulation speed without undermining accuracy. We have assessed the accuracy and run-time speed-ups of the proposed model against a 3D IC simulator based on compact model. We show that the proposed thermal simulator achieves speed-ups up to 106x for 3D ICs with liquid cooling while preserving the maximum absolute error lower than 1.0 • C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.