Abstract-Wireless body sensor networks (WBSN) hold the promise to be a key enabling information and communications technology for next-generation patient-centric telecardiology or mobile cardiology solutions. Through enabling continuous remote cardiac monitoring, they have the potential to achieve improved personalization and quality of care, increased ability of prevention and early diagnosis, and enhanced patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled ECG monitors still fall short of the required functionality, miniaturization, and energy efficiency. Among others, energy efficiency can be improved through embedded ECG compression, in order to reduce airtime over energy-hungry wireless links. In this paper, we quantify the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote. Interestingly, our results show that CS represents a competitive alternative to state-of-the-art digital wavelet transform (DWT)-based ECG compression solutions in the context of WBSN-based ECG monitoring systems. More specifically, while expectedly exhibiting inferior compression performance than its DWT-based counterpart for a given reconstructed signal quality, its substantially lower complexity and CPU execution time enables it to ultimately outperform DWT-based ECG compression in terms of overall energy efficiency. CS-based ECG compression is accordingly shown to achieve a 37.1% extension in node lifetime relative to its DWTbased counterpart for "good" reconstruction quality.
With increasing communication demands of processor and memory cores in Systems on Chips (SoCs), scalable Networks on Chips (NoCs) are needed to interconnect the cores. For the use of NoCs to be feasible in today's industrial designs, a custom-tailored, application-specific NoC that satisfies the design objectives and constraints of the targeted application domain is required. In this work, we present a design methodology that automates the synthesis of such application-specific NoC architectures. We present a floorplan aware design method that considers the wiring complexity of the NoC during the topology synthesis process. This leads to detecting timing violations on the NoC links early in the design cycle and to have accurate power estimations of the interconnect. We incorporate mechanisms to prevent deadlocks during routing, which is critical for proper operation of NoCs. We integrate the NoC synthesis method with an existing design flow, automating NoC synthesis, generation, simulation and physical design processes. We also present ways to ensure design convergence across the levels. Experiments on several SoC benchmarks are presented, which show that the synthesized topologies provide a large reduction in network power consumption (2.78× on average) and improvement in performance (1.59× on average) over the best mesh and mesh-based custom topologies. An actual layout of a multimedia SoC with the NoC designed using our methodology is presented, which shows that the designed NoC supports the required frequency of operation (close to 900 MHz) without any timing violations. We could design the NoC from input specifications to layout in 4 hours, a process that usually takes several weeks.
Abstract-Technology scaling has caused the feature sizes to shrink continuously, whereas interconnects, unlike transistors, have not followed the same trend. Designing 3D stack architectures is a recently proposed approach to overcome the power consumption and delay problems associated with the interconnects by reducing the length of the wires going across the chip. However, 3D integration introduces serious thermal challenges due to the high power density resulting from placing computational units on top of each other. In this work, we first investigate how the existing thermal management, power management and job scheduling policies affect the thermal behavior in 3D chips. We then propose a dynamic thermally-aware job scheduling technique for 3D systems to reduce the thermal problems at very low performance cost. Our approach can also be integrated with power management policies to reduce energy consumption while avoiding the thermal hot spots and large temperature variations.
Abstract-This work is devoted to the evaluation of multilead digital wavelet transform (DWT)-based electrocardiogram (ECG)wave delineation algorithms, which were optimized and ported to a commercial wearable sensor platform. More specifically, we investigate the use of root-mean squared (RMS)-based multilead followed by a single-lead online delineation algorithm, which is based on a state-of-the-art offline single-lead delineator. The algorithmic transformations and software optimizations necessary to enable embedded ECG delineation notwithstanding the limited processing and storage resources of the target platform are described, and the performance of the resulting implementations are analyzed in terms of delineation accuracy, execution time, and memory usage. Interestingly, RMS-based multilead delineation is shown to perform equivalently to the best single-lead delineation for the 2-lead QT database (QTDB), within a fraction of a sample duration of the Common Standards for Electrocardiography (CSE) committee tolerances. Finally, a comprehensive evaluation of the energy consumption entailed by the considered algorithms is proposed, which allows very relevant insights into the dominant energy-draining functionalities and which suggests suitable design guidelines for long-lasting wearable ECG monitoring systems.Index Terms-Ambulatory electrocardiogram, delineation, digital wavelet transform, energy-constrained systems, multilead, wireless sensor node.
Today, epilepsy is one of the most common chronic diseases affecting more than 65 million people worldwide and is ranked number four after migraine, Alzheimer's disease, and stroke. Despite the recent advances in anti-epileptic drugs, one-third of the epileptic patients continue to have seizures. More importantly, epilepsy-related causes of death account for 40% of mortality in high-risk patients. However, no reliable wearable device currently exists for real-time epileptic seizure detection. In this paper, we propose e-Glass, a wearable system based on four electroencephalogram (EEG) electrodes for the detection of epileptic seizures. Based on an early warning from e-Glass, it is possible to notify caregivers for rescue to avoid epilepsy-related death due to the underlying neurological disorders, sudden unexpected death in epilepsy, or accidents during seizures. We demonstrate the performance of our system using the Physionet.org CHB-MIT Scalp EEG database for epileptic children. Our experimental evaluation demonstrates that our system reaches a sensitivity of 93.80% and a specificity of 93.37%, allowing for 2.71 days of operation on a single battery charge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.