HighlightsThis systematic review focuses on structural and functional neuroimaging findings in PD patients with FOG.The existing neuroimaging literature may explain several mechanisms underpinning FOG in PD.FOG in PD reflect structural or functional damage in brain regions responsible for human locomotion.
Balance impairment is a major mechanism behind falling along with environmental hazards. Under physiological conditions, ageing leads to a progressive decline in balance control per se. Moreover, various neurological disorders further increase the risk of falls by deteriorating specific nervous system functions contributing to balance. Over the last 15 years, significant advancements in technology have provided wearable solutions for balance evaluation and the management of postural instability in patients with neurological disorders. This narrative review aims to address the topic of balance and wireless sensors in several neurological disorders, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, stroke, and other neurodegenerative and acute clinical syndromes. The review discusses the physiological and pathophysiological bases of balance in neurological disorders as well as the traditional and innovative instruments currently available for balance assessment. The technical and clinical perspectives of wearable technologies, as well as current challenges in the field of teleneurology, are also examined.
Freezing of gait (FOG) is a disabling disorder that often affects Parkinson's disease (PD) patients in advanced stages of the disease. To study structural gray matter (GM) and white matter (WM) changes in PD patients with and without FOG, twenty-one PD patients with FOG (PD-FOG), 16 PD patients without FOG (PD-nFOG) and 19 healthy subjects (HS) underwent a standardized MRI protocol. For the gray matter evaluation, cortical volume (CV), cortical thickness (CTh), and surface area (SA) were analyzed using the FreeSurfer pipeline. For the white matter evaluation, DTI images were analyzed using tracts constrained by underlying anatomy (TRACULA) toolbox in FreeSurfer. PD-FOG patients exhibited lower CTh than HS in the mesial surface of both cerebral hemispheres, including the superior frontal gyrus, paracentral lobule, posterior cingulate cortex, precuneus and pericalcarine cortex, and in the right dorsolateral prefrontal cortex. Moreover, significant WM changes were observed in PD-FOG patients in comparison with HS in the superior longitudinal fasciculus, uncinate fasciculus, cingulum cingulate gyrus and inferior longitudinal fasciculus (prevalently in the right hemisphere) and in the frontal radiations of the corpus callosum. DTI abnormalities in specific WM bundles correlated significantly with cognitive measures. The damage of multiple cortical areas involved in high-level gait control together with WM disruption between motor, cognitive and limbic structures may represent the anatomical correlate of FOG.
Freezing of gait (FOG) is a leading cause of falls and fractures in Parkinson’s disease (PD). The episodic and rather unpredictable occurrence of FOG, coupled with the variable response to l-DOPA of this gait disorder, makes the objective evaluation of FOG severity a major clinical challenge in the therapeutic management of patients with PD. The aim of this study was to examine and compare gait, clinically and objectively, in patients with PD, with and without FOG, by means of a new wearable system. We also assessed the effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters in patients with and without FOG. To this purpose, we recruited 28 patients with FOG, 16 patients without FOG, and 16 healthy subjects. In all participants, gait was evaluated clinically by video recordings and objectively by means of the wearable wireless system, during a modified 3-m Timed Up and Go (TUG) test. All patients performed the modified TUG test under and not under dopaminergic therapy (ON and OFF therapy). By comparing instrumental data with the clinical identification of FOG based on offline video-recordings, we also assessed the performance of the wearable system to detect FOG automatically in terms of sensitivity, specificity, positive and negative predictive values, and finally accuracy. TUG duration was longer in patients than in controls, and the amount of gait abnormalities was prominent in patients with FOG compared with those without FOG. l-DOPA improved gait significantly in patients with PD and particularly in patients with FOG mainly by reducing FOG duration and increasing specific spatiotemporal gait parameters. Finally, the overall wireless system performance in automatic FOG detection was characterized by excellent sensitivity (93.41%), specificity (98.51%), positive predictive value (89.55%), negative predictive value (97.31%), and finally accuracy (98.51%). Our study overall provides new information on the beneficial effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters as objectively measured by a wearable sensory system. The algorithm here reported potentially opens to objective long-time sensing of FOG episodes in patients with PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.