Recent investigations conducted on several tritrophic systems have demonstrated that egg parasitoids, when searching for host eggs, may exploit plant synomones that have been induced as a consequence of host oviposition. In this article we show that, in a system characterized by host eggs embedded in the plant tissue, naïve females of the egg parasitoid Anagrus breviphragma Soyka (Hymenoptera: Mymaridae) responded in a Y‐tube olfactometer to volatiles from leaves of Carex riparia Curtis (Cyperaceae) containing eggs of one of its hosts, Cicadella viridis (L.) (Hemiptera: Cicadellidae). The wasp did not respond to host eggs or to clean leaves from non‐infested plants compared with clean air, whereas it showed a strong preference for the olfactometer arm containing volatiles of leaves with embedded host eggs, compared with the arm containing volatiles of leaves from a non‐infested plant or host eggs extracted from the plant. When the eggs were removed from an infested leaf, the parasitoid preference was observed only if eggs were added aside, suggesting a synergistic effect of a local plant synomone and an egg kairomone. The parasitoid also responded to clean leaves from an egg‐infested plant when compared with leaves from a non‐infested plant, indicating a systemic effect of volatile induction.
A novel treatment based on polyamidoamines (PAAs) for the preservation of wood against fungi and insects with a broad protection functionality, low effective concentration, and low environmental impact has been developed. PAAs were synthesized by nucleophile addition of ethanolamine (EtA) and/or 3-aminopropyltriethoxysilane (APTES) to N,N′-methylene-bisacrylamide (MBA). The molar ratios in the tested formulation were: I) MBA:EtA=1:1; II) MBA:APTES=1:1; III) MBA:EtA:APTES=1:0.5:0.5. These formulations, characterized by ESI-MS, NMR, FT-IR, were tested against: (a) the wood decay fungi (Coniophora puteana, Coriolus versicolor, and Poria placenta); (b) the subterranean termite Reticulitermes lucifugus, and the drywood termite Kalotermes flavicollis; (c) the woodborer Stegobium paniceum. Tests in combination with leaching showed that formulation II and III can be utilized as fungal wood preservatives for use classes 2–3 (EN 335:2013). In addition, all PAAs formulations were equally effective in preserving wood against the subterranean termite, and formulation II was most effective against drywood termite. On the other hand, the formulation I showed good efficacy against S. paniceum
Anagrus breviphragma Soyka (Hymenoptera: Mymaridae) successfully parasitises eggs of Cicadella viridis (L.) (Homoptera: Cicadellidae), embedded in vegetal tissues, suggesting the idea of possible chemical and physical cues, revealing the eggs presence. In this research, three treatments were considered in order to establish which types of cue are involved: eggs extracted from leaf, used as a control, eggs extracted from leaf and cleaned in water and ethanol, used to evaluate the presence of chemicals soluble in polar solvents, and eggs extracted from leaf and covered with Parafilm (M), used to avoid physical stimuli due to the bump on the leaf surface. The results show that eggs covered with Parafilm present a higher number of parasitised eggs and a lower probing starting time with respect to eggs washed with polar solvents or eggs extracted and untreated, both when the treatments were singly tested or when offered in sequence, independently of the treatment position. These results suggest that the exploited stimuli are not physical due to the bump but chemicals that can spread in the Parafilm, circulating the signal on the whole surface, and that the stimuli that elicit probing and oviposition are not subjected to learning.
-Controlled atmospheres using nitrogen represent a safe and effective method for both objects and human health. The use of this technique against pests in museums has received an increasing amount of interest during the last twenty years. This paper looks at the researches into anoxic treatments that use nitrogen from the late '80s until now. At the moment, the recommended protocol suggests an oxygen percentage below 1% for at least three weeks. Considering that the major practical problems of controlled atmospheres are connected to treatment time and low oxygen percentage, it is very important to develop more flexible protocols that consider higher oxygen percentages or shorter treatment times, exploiting temperature and/or relative humidity. At oxygen percentage higher than those commonly used, temperature and relative humidity are very critical to insects' development and success. Preliminary data (unpublished) show that it is possible to adapt the application of the controlled atmospheres to different situations, taking advantage of favorable conditions already present in the considered situation and at the same time to use the other parameters at more favorable levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.