The enzymes of the poly-ADP-ribose polymerase (PARP) superfamily control many relevant cellular processes, but a precise understanding of their activities in different physiological or disease contexts is largely incomplete. We found that transcription of several genes was dynamically regulated upon murine macrophage activation by endotoxin. PARP14 was strongly induced by several inflammatory stimuli and translocated into the nucleus of stimulated cells. Quantitative mass spectrometry analysis showed that PARP14 bound to a group of IFN-stimulated gene (ISG)-encoded proteins, most with an unknown function, and it was required for their nuclear accumulation. Moreover, PARP14 depletion attenuated transcription of primary antiviral response genes regulated by the IFN regulatory transcription factor 3, including, thus reducing IFN-β production and activation of ISGs involved in the secondary antiviral response. In agreement with the above-mentioned data, PARP14 hindered proliferation in murine macrophages. Overall, these data hint at a role of PARP14 in the control of antimicrobial responses and specifically in nuclear activities of a subgroup of ISG-encoded proteins.
We recently demonstrated that ex vivo activation of SMAD-independent BMP4 signaling in hematopoietic stem/progenitor cells (HSPCs) influences their homing into the bone marrow (BM). We here assessed if alterations in BMP signaling in vivo affects adult hematopoiesis by affecting the BM niche. We demonstrate that systemic inhibition of SMAD-dependent BMP signaling by infusion of the BMP antagonist Noggin (NGN) significantly increased CXCL12 levels in BM plasma leading to enhanced homing and engraftment of transplanted HSPCs. Conversely, the infusion of BMP7 but not BMP4, resulted in decreased HSPC homing. Using ST2 cells as an in vitro model of BM niche, we found that incubation with neutralizing anti-BMP4 antibodies, NGN or dorsomorphin (DM) as well as knockdown of Smad1/5 and Bmp4, all enhanced CXCL12 production. Chromatin immunoprecipitation identified the SMAD-binding element in the CXCL12 promoter to which SMAD4 binds. When deleted, increased CXCL12 promoter activity was observed, and NGN or DM no longer affected Cxcl12 expression. Interestingly, BMP7 infusion resulted in mobilization of only short-term HSCs, likely because BMP7 affected CXCL12 expression only in osteoblasts but not in other niche components. Hence, we describe SMAD-dependent BMP signaling as a novel regulator of CXCL12 production in the BM niche, influencing HSPC homing, engraftment and mobilization.
BackgroundNatural killer (NK) cells require a functional lytic granule machinery to mediate effective antitumor responses. Evading the lytic cargo deployed at the immune synapse (IS) could be a critical step for cancer progression through yet unidentified mechanisms.MethodsNK cell antibody-dependent cellular cytotoxicity (ADCC) is a major determinant of the clinical efficacy of some therapeutic antibodies including the anti-HER2 Trastuzumab. Thus, we screened sera of Trastuzumab-resistant HER2 +patients with breast cancer for molecules that could inhibit NK cell ADCC. We validated our findings in vitro using cytotoxicity assays and confocal imaging of the lytic granule machinery and in vivo using syngeneic and xenograft murine models.ResultsWe found that sera from Trastuzumab-refractory patients could inhibit healthy NK cell ADCC in vitro. These sera contained high levels of the inflammatory protein chitinase 3-like 1 (CHI3L1) compared with sera from responders and healthy controls. We demonstrate that recombinant CHI3L1 inhibits both ADCC and innate NK cell cytotoxicity. Mechanistically, CHI3L1 prevents the correct polarization of the microtubule-organizing center along with the lytic granules to the IS by hindering the receptor of advanced glycation end-products and its downstream JNK signaling. In vivo, CHI3L1 administration drastically impairs the control of NK cell-sensitive tumors, while CHI3L1 blockade synergizes with ADCC to cure mice with HER2 +xenografts.ConclusionOur work highlights a new paradigm of tumor immune escape mediated by CHI3L1 which acts on the cytotoxic machinery and prevents granule polarization. Targeting CHI3L1 could mitigate immune escape and potentiate antibody and cell-based immunotherapies.
Identification of a class of non-conventional ERstress-response-derived immunogenic peptidesGraphical abstract Highlights d Tumor cell infection with Salmonella induces the release of immunogenic peptides d Peptide-based vaccine boosts a strong antitumor response in dog osteosarcoma d MS analysis identified shared peptides released by human melanoma cell lines d Twelve identified peptides are capable of inducing a tumorspecific CD8 response
Background and Aims The SARS-CoV-2 pandemic has overwhelmed the treatment capacity of the health care systems during the highest viral diffusion rate. Patients reaching the emergency department had to be either hospitalized (inpatients) or discharged (outpatients). Still, the decision was taken based on the individual assessment of the actual clinical condition, without specific biomarkers to predict future improvement or deterioration, and discharged patients often returned to the hospital for aggravation of their condition. Here, we have developed a new combined approach of omics to identify factors that could distinguish coronavirus disease 19 (COVID-19) inpatients from outpatients. Methods Saliva and blood samples were collected over the course of two observational cohort studies. By using machine learning approaches, we compared salivary metabolome of 50 COVID-19 patients with that of 270 healthy individuals having previously been exposed or not to SARS-CoV-2. We then correlated the salivary metabolites that allowed separating COVID-19 inpatients from outpatients with serum biomarkers and salivary microbiota taxa differentially represented in the two groups of patients. Results We identified nine salivary metabolites that allowed assessing the need of hospitalization. When combined with serum biomarkers, just two salivary metabolites (myo-inositol and 2-pyrrolidineacetic acid) and one serum protein, chitinase 3-like-1 (CHI3L1), were sufficient to separate inpatients from outpatients completely and correlated with modulated microbiota taxa. In particular, we found Corynebacterium 1 to be overrepresented in inpatients, whereas Actinomycetaceae F0332 , Candidatus Saccharimonas , and Haemophilus were all underrepresented in the hospitalized population. Conclusion This is a proof of concept that a combined omic analysis can be used to stratify patients independently from COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.