Identification of a class of non-conventional ERstress-response-derived immunogenic peptidesGraphical abstract Highlights d Tumor cell infection with Salmonella induces the release of immunogenic peptides d Peptide-based vaccine boosts a strong antitumor response in dog osteosarcoma d MS analysis identified shared peptides released by human melanoma cell lines d Twelve identified peptides are capable of inducing a tumorspecific CD8 response
Background and Aims The SARS-CoV-2 pandemic has overwhelmed the treatment capacity of the health care systems during the highest viral diffusion rate. Patients reaching the emergency department had to be either hospitalized (inpatients) or discharged (outpatients). Still, the decision was taken based on the individual assessment of the actual clinical condition, without specific biomarkers to predict future improvement or deterioration, and discharged patients often returned to the hospital for aggravation of their condition. Here, we have developed a new combined approach of omics to identify factors that could distinguish coronavirus disease 19 (COVID-19) inpatients from outpatients. Methods Saliva and blood samples were collected over the course of two observational cohort studies. By using machine learning approaches, we compared salivary metabolome of 50 COVID-19 patients with that of 270 healthy individuals having previously been exposed or not to SARS-CoV-2. We then correlated the salivary metabolites that allowed separating COVID-19 inpatients from outpatients with serum biomarkers and salivary microbiota taxa differentially represented in the two groups of patients. Results We identified nine salivary metabolites that allowed assessing the need of hospitalization. When combined with serum biomarkers, just two salivary metabolites (myo-inositol and 2-pyrrolidineacetic acid) and one serum protein, chitinase 3-like-1 (CHI3L1), were sufficient to separate inpatients from outpatients completely and correlated with modulated microbiota taxa. In particular, we found Corynebacterium 1 to be overrepresented in inpatients, whereas Actinomycetaceae F0332 , Candidatus Saccharimonas , and Haemophilus were all underrepresented in the hospitalized population. Conclusion This is a proof of concept that a combined omic analysis can be used to stratify patients independently from COVID-19.
Therapies that utilize immune checkpoint inhibition work by leveraging mutation-derived neoantigens and have shown greater clinical efficacy in tumors with higher mutational burden. Whether tumors with a low mutational burden are susceptible to neoantigen-targeted therapy has not been fully addressed. To examine the feasibility of neoantigen-specific adoptive T-cell therapy, the authors studied the T-cell response against somatic variants in five patients with myelodysplastic syndrome (MDS), a malignancy with a very low tumor mutational burden. DNA and RNA from tumor (CD34 +) and normal (CD3 +) cells isolated from the patients' blood were sequenced to predict patient-specific MDS neopeptides. Neopeptides representing the somatic variants were used to induce and expand autologous T cells ex vivo, and these were systematically tested in killing assays to determine the proportion of neopeptides yielding neoantigen-specific T cells. The authors identified a total of 32 somatic variants (four to eight per patient) and found that 21 (66%) induced a peptidespecific T-cell response and 19 (59%) induced a T-cell response capable of killing autologous tumor cells. Of the 32 somatic variants, 11 (34%) induced a CD4 + response and 11 (34%) induced a CD8 + response that killed the tumor. These results indicate that in vitro induction of neoantigen-specific T cells is feasible for tumors with very low mutational burden and that this approach warrants investigation as a therapeutic option for such patients.
Despite efforts to develop novel treatment strategies, human and canine osteosarcomas continue to have poor prognosis and limited overall survival. The aim of this clinical trial was to test the antitumor effect and safety of multiple dermal administrations of a peptide-based anticancer vaccine in dogs with non-metastatic appendicular osteosarcoma undergoing standard of care (SOC), consisting of limb amputation and adjuvant chemotherapy. Salmonella-infected canine osteosarcoma cells were induced to release immunogenic peptides in the extracellular space via Cx43 hemichannels opening; the secretome was collected and constituted the vaccine. Dogs with non-metastatic appendicular osteosarcoma were eligible for recruitment. Following limb amputation and adjuvant carboplatin, dogs were vaccinated on a monthly basis for six times and followed up with serial thoracic radiographs. A population of dogs undergoing SOC treatment (amputation and adjuvant carboplatin) before the vaccine was available served as controls. Primary endpoints were time to metastasis (TTM) and tumor-specific survival (TSS). Secondary endpoints were feasibility, toxicity, T-cell and humoral immune responses. A total of 20 dogs were vaccinated along with SOC and 34 received SOC only. Vaccine-specific humoral and T-cell responses were observed; their amplitude correlated with TSS. Vaccine-associated toxicity was not recorded. TTM and TSS were significantly longer in vaccinated versus unvaccinated dogs (TTM: 308 vs. 240 days, respectively; p = 0.010; TSS: 621 vs. 278 days, respectively; p = 0.002). In dogs with non-metastatic osteosarcoma undergoing SOC, the addition of a bacteria-based vaccination strategy increased TTM, thereby prolonging survival, while maintaining a safe profile. Additionally, vaccinated dogs developed a long-term tumor-specific response, as documented by the immunomonitoring of these patients over time. These results hold promise for future management of canine osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.