A new approach is presented in order to improve the thermal stability of polymer:PCBM bulk heterojunction solar cells. The central idea in this approach is the use of a polymer with high glass transition temperature (T g ), well above the normal operating temperatures of the devices. In this paper a PPV-derivative with a T g of 150°C was used as electron donor and the thermal stability of the obtained solar cells was compared with solar cells based on the reference material Poly[2methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) with a T g of 45°C.The use of the material with higher glass transition temperature resulted in a significant improvement of the thermal stability of the photovoltaic parameters. Furthermore, a systematic TEM study demonstrates that the better thermal stability of performance coincides with a more stable active layer morphology. Both improvements are attributed to the reduced free movement of the electron donor material ([6-6]-phenyl C 61 butyric acid methyl ester, PCBM) within the active layer of the solar cell.1
Polymer:fullerene blends were screened in a combinatorial approach using inkjet printing thin film libraries for photovoltaic devices. The application of inkjet printing enabled a fast and simple experimental workflow from film preparation to the study of structure‐property‐relationships with a very high material efficiency. Inkjet printing requires less material for the preparation of thin film libraries in comparison to other dispensing techniques, like spin‐coating. Two polymers (PCPDTBT, PSBTBT) and two fullerene derivatives (mono‐PCBM, bis‐PCBM) were investigated in various blend ratios, concentrations, solvent ratios, and film thicknesses. Morphological and optical properties of the inkjet printed films were investigated and compared with spin‐coated films. This study shows the principle of an experimental setup from solution preparation to film characterization for the combinatorial investigation of large polymer:fullerene libraries.
In this study, the fabrication of highly efficient and durable flexible inverted perovskite solar cells (PSCs) is reported. Presynthesized, solution-derived NiO and ZnO nanoparticles films are employed at room temperature as a hole transport layer (HTL) and electron transport layer (ETL), respectively. The triple cation perovskite films are produced in a single step and for the sake of comparison, ultrasmooth and pinhole-free absorbing layers are also fabricated using MAPbI perovskite. The triple cation perovskite cells exhibit champion power conversion efficiencies (PCEs) of 18.6% with high stabilized power conversion efficiency of 17.7% on rigid glass/indium tin oxide (ITO) substrates (comparing with 16.6% PCE with 16.1% stabilized output efficiency for the flexible polyethylene naphthalate (PEN)/thin film barrier/ITO substrates). More interestingly, the durability of flexible PSC under simulation of operative condition is proved. Over 85% of the maximum stabilized output efficiency is retained after 1000 h aging employing a thin MAPbI perovskite (over 90% after 500 h with a thick triple cation perovskite). This result is comparable to a similar state of the art rigid PSC and represents a breakthrough in the stability of flexible PSC using ETLs and HTLs compatible with roll to roll production speed, thanks to their room temperature processing.
In organic bulk heterojunction solar cells, the nanoscale morphology of interpenetrating donor-acceptor materials and the resulting photovoltaic parameters alter as a consequence of prolonged operation at temperatures above the glass transition temperature. Thermal annealing induces clustering of the acceptor material and a corresponding decrease in the short circuit current. A model based on the kinetics of Ostwald ripening is proposed to describe the thermally accelerated degradation of the short circuit current of solar cells with poly(2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV) as donor and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) as acceptor. The activation energy for the degradation is determined by an Arrhenius model, allowing to perform shelf life prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.