While organic semiconductors used in polymer:fullerene photovoltaics are generally not intentionally doped, significant levels of unintentional doping have previously been reported in the literature. Here, we explain the differences in photocurrent collection between standard (transparent anode) and inverted (transparent cathode) low band-gap polymer:fullerene solar cells in terms of unintentional p-type doping. Using capacitance/voltage measurements, we find that the devices exhibit doping levels of order 10 16 cm 23 , resulting in space-charge regions ,100 nm thick at short circuit. As a result, low field regions form in devices thicker than 100 nm. Because more of the light is absorbed in the low field region in standard than in inverted architectures, the losses due to inefficient charge collection are greater in standard architectures. Using optical modelling, we show that the observed trends in photocurrent with device architecture and thickness can be explained if only charge carriers photogenerated in the depletion region contribute to the photocurrent.T he record power conversion efficiency (PCE) achieved by polymer:fullerene solar cells has increased considerably in the past 4 years to a record published value of 9.2% 1 for a single bulk heterojunction and efficiencies of 10.6% for tandem solar cells 2 . This is despite the fact that organic semiconductors are known to be both structurally and electronically disordered, have lower dielectric constants inhibiting separation of the photogenerated excitonic species and have charge carrier mobilities orders of magnitude lower than inorganic semiconductors.Whilst charge mobilities are low in organic semiconductors and collection losses have been shown to limit the fill factor (FF) 3-5 and short circuit current density (J SC ) 6-10 of certain devices, low mobilities do not necessarily prevent devices from performing efficiently. However the lower charge mobilities and diffusion coefficients in organic semiconductors do mean that diffusion alone is insufficient for charge carrier collection and drift must account for a large proportion of the generated photocurrent. Additionally, polymer:fullerene solar cells are not intentionally doped like their inorganic counterparts or like many small molecule solar cells 11 and therefore rely on selective contacts and the difference in work function between electrodes for efficient charge collection. However, several studies have found evidence for unintentional doping [12][13][14][15][16][17][18][19] and discussed the consequences for device behaviour 6,[20][21][22][23][24][25][26][27][28][29][30] . Whilst the origin of this doping is unclear 15 , its effects on photovoltaic performance can be substantial; however many recent analyses of device performance neglect doping 8,[31][32][33] despite the fact that the influence of doping and the electric field on charge carrier collection is well known for a long time 34 and wellstudied for instance in the field of quantum dot photovoltaics 35,36 .In this paper, we address the...