Key Points Vδ1 and Vδ2 T cells promptly reconstitute in children given haploidentical stem cell transplantation depleted of αβ+ T and CD19+ B cells. Vδ1 cells are expanded in patients experiencing cytomegalovirus reactivation; ZOL potentiates Vδ2 killing against leukemia blasts.
Purpose: Acute myeloid leukemia (AML) accounts for more than half of fatal cases in all pediatric leukemia patients; this observation highlights the need of more effective therapies. Thus, we investigated whether interleukin (IL)-27, an immunomodulatory cytokine, functions as an antitumor agent against pediatric AML cells.Experimental Design: Expression of WSX-1 and gp130 on AML cells from 16 pediatric patients was studied by flow cytometry. Modulation of leukemia cell proliferation or apoptosis upon IL-27 treatment in vitro was tested by bromodeoxyuridine/propidium iodide (PI) and Ki67, or Annexin V/PI staining and flow cytometric analysis. The angiogenic potential of AML cells treated or not with IL-27 was studied by chorioallantoic membrane assay and PCR array. In vivo studies were carried out using nonobese diabetic/ severe combined immunodeficient (NOD/SCID)/Il2rg À/À mice injected intravenously with five pediatric AML cell samples. Leukemic cells engrafted in PBS and IL-27-treated animals were studied by immunohistochemical/morphologic analysis and by PCR array for expression angiogenic/dissemination-related genes. Results: We provided the first demonstration that (i) AML cells injected into NOD/SCID/Il2rgÀ/À mice gave rise to leukemia dissemination that was severely hampered by IL-27, (ii) compared with controls, leukemia cells harvested from IL-27-treated mice showed significant reduction of their angiogenic and spreading related genes, and (iii) similarly to what was observed in vivo, IL-27 reduced in vitro AML cell proliferation and modulated the expression of different genes involved in the angiogenic/spreading process. Conclusion: These results provide an experimental rationale for the development of future clinical trials aimed at evaluating the toxicity and efficacy of IL-27.
Purpose: The interleukin (IL)-27 cytokine subunit p28, also called IL-30, has been recognized as a novel immunoregulatory mediator endowed with its own functions. These are currently the subject of discussion in immunology, but completely unexplored in cancer biology. We set out to investigate the role of IL-30 in prostate carcinogenesis and its effects on human prostate cancer (hPCa) cells.Experimental Design: IL-30 expression, as visualized by immunohistochemistry and real-time reverse transcriptase PCR on prostate and draining lymph nodes from 125 patients with prostate cancer, was correlated with clinicopathologic data. IL-30 regulation of hPCa cell viability and expression of selected gene clusters was tested by flow cytometry and PCR array.Results: IL-30, absent in normal prostatic epithelia, was expressed by cancerous epithelia with Gleason ! 7% of 21.3% of prostate cancer stage I to III and 40.9% of prostate cancer stage IV. IL-30 expression by tumor infiltrating leukocytes (T-ILK) was higher in stage IV that in stage I to III prostate cancer (P ¼ 0.0006) or in control tissue (P ¼ 0.0011). IL-30 expression in prostate draining lymph nodes (LN)-ILK was higher in stage IV than in stage I to III prostate cancer (P ¼ 0.0031) or in control nodes (P ¼ 0.0023). The main IL-30 sources were identified as CD68 þ macrophages, CD33 þ
We demonstrated that γδ T cells of patients given HLA-haploidentical HSCT after removal of αβ T cells and CD19 B cells are endowed with the capacity of killing leukemia cells after treatment with zoledronic acid (ZOL). Thus, we tested the hypothesis that infusion of ZOL in patients receiving this type of graft may enhance γδ T-cell cytotoxic activity against leukemia cells. ZOL was infused every 28 d in 43 patients; most were treated at least twice. γδ T cells before and after ZOL treatments were studied in 33 of these 43 patients, till at least 7 mo after HSCT by high-resolution mass spectrometry, flow-cytometry, and degranulation assay. An induction of Vδ2-cell differentiation, paralleled by increased cytotoxicity of both Vδ1 and Vδ2 cells against primary leukemia blasts was associated with ZOL treatment. Cytotoxic activity was further increased in Vδ2 cells, but not in Vδ1 lymphocytes in those patients given more than one treatment. Proteomic analysis of γδ T cells purified from patients showed upregulation of proteins involved in activation processes and immune response, paralleled by downregulation of proteins involved in proliferation. Moreover, a proteomic signature was identified for each ZOL treatment. Patients given three or more ZOL infusions had a better probability of survival in comparison to those given one or two treatments (86% vs. 54%, respectively, = 0.008). Our data indicate that ZOL infusion in pediatric recipients of αβ T- and B-cell-depleted HLA-haploidentical HSCT promotes γδ T-cell differentiation and cytotoxicity and may influence the outcome of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.