Streaming Machine Learning (SML) studies singlepass learning algorithms that update their models one data item at a time given an unbounded and often non-stationary flow of data (a.k.a., in presence of concept drift). Online class imbalance learning is a branch of SML that combines the challenges of both class imbalance and concept drift. In this paper, we investigate the binary classification problem of rebalancing an imbalanced stream of data in the presence of concept drift, accessing one sample at a time. We propose Continuous Synthetic Minority Oversampling Technique (C-SMOTE), a novel rebalancing meta-strategy to pipeline with SML classification algorithms. C-SMOTE is inspired by the popular SMOTE algorithm but operates continuously. We benchmark C-SMOTE pipelines on ten different groups of data streams. We bring empirical evidence that models learnt with C-SMOTE pipelines outperform models trained on imbalanced data stream without losing the ability to deal with concept drifts. Moreover, we show that they outperform other stream balancing techniques from the literature.
The world is constantly changing, and so are the massive amount of data produced. However, only a few studies deal with online class imbalance learning that combines the challenges of class-imbalanced data streams and concept drift. In this paper, we propose the very fast continuous synthetic minority oversampling technique (VFC-SMOTE). It is a novel meta-strategy to be prepended to any streaming machine learning classification algorithm aiming at oversampling the minority class using a new version of Smote and Borderline-Smote inspired by Data Sketching. We benchmarked VFC-SMOTE pipelines on synthetic and real data streams containing different concept drifts, imbalance levels, and class distributions. We bring statistical evidence that VFC-SMOTE pipelines learn models whose minority class performances are better than state-of-the-art. Moreover, we analyze the time/memory consumption and the concept drift recovery speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.