“…They are calculated over a sliding window of 500 instances. (Bernardo et al, 2020a) Data-Level RI Online Explicit C-SMOTE (Bernardo et al, 2020b) Data-Level RI Online Explicit VFC-SMOTE (Bernardo and Della Valle, 2021b) Data-Level RI Online Explicit CSARF (Loezer et al, 2020) Algo-Level CS Online Explicit -GHVFDT (Lyon et al, 2014) Algo-Level TM Online Implicit -HDVFDT (Cieslak and Chawla, 2008) Algo-Level TM Online Implicit -ARF (Gomes et al, 2017) Ensemble -Online Explicit -KUE (Cano and Krawczyk, 2020) Ensemble -Hybrid Explicit LB (Bifet et al, 2010a) Ensemble -Online Explicit OBA (Bifet et al, 2009) Ensemble -Online Explicit SRP (Gomes et al, 2019) Ensemble -Online Explicit ESOS-ELM (Mirza et al, 2015) Ensemble -Chunk Explicit -CALMID (Liu et al, 2021) Ensemble -Hybrid Explicit MICFOAL (Liu et al, 2021) Ensemble -Online Explicit ROSE Ensemble -Hybrid Explicit OADA (Wang and Pineau, 2016) Ensemble -Online Explicit OADAC2 (Wang and Pineau, 2016) Ensemble -Online Explicit ARFR (Ferreira et al, 2019) Ensemble RI Online Explicit -SMOTE-OB (Bernardo and Della Valle, 2021a) Ensemble RI Online Explicit OSMOTE (Wang and Pineau, 2016) Ensemble RI Online Explicit OOB Ensemble ROB Online Implicit UOB Ensemble RUB Online Implicit ORUB (Wang and Pineau, 2016) Ensemble RUB Online Explicit OUOB (Wang and Pineau, 2016) Ensemble RB Online Explicit Kappa is used to evaluate classifiers in imbalanced settings (Brzeziński et al, , 2019. It evaluates the classifier performance by computing the inter-rater agreement between the successful predictions and the statistical distribution of the data classes, correcting agreements that occur by mere statistical chance.…”