A method is presented for the automatic identification of lost or undiscovered archaeological sites in Egypt by using shape detection techniques on satellite imagery superposed in a GIS environment. For an area of interest, the EO data available from various satellites is pre-processed and from historical plans a shape file of the archaeological structure of interest is produced. A shape detection algorithm employing a shape matched operator is applied to the EO image to produce a detection image identifying the most probable location of the archaeological structure of interest. The shapematched operator employed is the derivative of double exponential (DODE) operator. The final product is a GIS data set assembled as a list of required features and layers, all converted and processed in the same Geographical Reference System. 1.
Abstract. Accurate predictions of expected radiation dose levels on Mars are often provided by specific radiation transport codes that have been adapted to space conditions. Unsurprisingly, several of the main space agencies and institutions involved in space research and technology tend to work with their own in-house radiation codes. We present the codes that are related to the simulation of the radiation on Mars' surface under different scenarios. All of these codes have similar fields of application, but they differ with respect to several aspects, including the energy range and types of projectiles considered as well as the models of nuclear reactions considered.
Archaeological Heritage, naturally endangered by environmental processes and anthropogenic pressures, is today increasingly at risk, because of intense human activities and climate change, and their impact on atmosphere and soil. European research is increasingly dedicated to the development of good practices for monitoring archaeological sites and their preservation. One of the running projects about these topics is RESEARCH (Remote Sensing techniques for Archaeology; H2020-MSCA-RISE, grant agreement: 823987), started in 2018 and ending in 2022. RESEARCH aims at testing risk assessment methodology using an integrated system of documentation and research in the fields of archaeology and environmental studies. It will introduce a strategy and select the most efficient tools for the harmonization of different data, criteria, and indicators in order to produce an effective risk assessment. These will be used to assess and monitor the impact of soil erosion, land movement, and land-use change on tangible archaeological heritage assets. As a final product, the Project addresses the development of a multi-task thematic platform, combining advanced remote sensing technologies with GIS application. The demonstration and validation of the Platform will be conducted on six case studies located in Italy, Greece, Cyprus, and Poland, and variously affected by the threats considered by the Project. In the frame of RISE (Research and Innovation Staff Exchange), RESEARCH will coordinate the existing expertise and research efforts of seven beneficiaries into a synergetic plan of collaborations and exchanges of personnel (Ph.D. students and research staff), to offer a comprehensive transfer of knowledge and training environment for the researchers in the specific area. This paper aims at illustrating the results of the activities conducted during the first year of the Project, which consisted in developing an effective risk assessment methodology for soil-related threats affecting archaeological heritage, and defining the scientific requirements and the user requirements of the Platform. The activities have been conducted in synergy with all the Partners and were supported by the possibility of staff exchange allowed by the funding frame MSCA-RISE.
ABSTRACT:Innovation Technologies and Applications for Coastal Archaeological sites project (ITACA) aims to develop and test a management system for underwater archaeological sites in coastal regions. The discovering and monitoring service will use innovative satellite remote sensing techniques combined with image processing algorithms. The project will develop a set of applications integrated in a system pursuing the following objectives: Search and location of ancient ship wrecks; Monitoring of ship wrecks, ruins and historical artefacts that are now submerged; Integration of resulting search and monitoring data with on-site data into a management tool for underwater sites; Demonstration of the system's suitability for a service. High resolution synthetic aperture radar (TerraSAR-X, Cosmo-SkyMed) and multispectral satellite data (WorldView) will be combined to derive the relative bathymetry of the bottom of the sea up to the depth of 50 meters. The resulting data fusion will be processed using shape detection algorithms specific for archaeological items. The new algorithms, the physical modelling and the computational capabilities will be integrated into the Web-GIS, together with data recorded from surface (2D and 3D modelling) and from underwater surveys. Additional specific archaeological layers will be included into the WebGIS to facilitate the object identification through shape detection techniques and mapping. The system will be verified and validated through an extensive onground (sea) campaign carried out with both cutting edge technologies (side-scan sonar, multi beam echo sounder) and traditional means (professional scuba divers) in two test sites in Italy and Greece. The project is leaded by Planetek Hellas E.P.E. and include ALMA Sistemi sas for the "shape detection" and dissemination tasks, DHI-GRAS and Kell Srl for multispectral and SAR bathymetry. The complete consortium is composed by eleven partners and the project Kick-Off has been held in January 2014. The present contribution aims to present the project research achievements and finding at the mid-term review.
European Union FP7 APhoRISM project proposes the development and testing of two new methods to combine Earth Observation satellite data from different sensors and ground data. The aim is to demonstrate that this two types of data, appropriately managed and integrated, can provide new improved Copernicus Emergency products useful for seismic and volcanic crisis management. The first method, APE -A Priori information for Earthquake damage mapping, concerns the generation of maps to address the detection and estimate of damage caused by a seismic event. The novelty of APE relies on the exploitation of a priori information derived by InSAR time series to measure surface movements, shake maps obtained from seismological data, and buildings vulnerability information. The second method, MACE -Multi-platform volcanic Ash Cloud Estimation, concerns the exploitation of GEO sensor platform, LEO satellite sensors and ground measures to improve the ash detection and retrieval, and to characterize the volcanic ash clouds. INGV covers the role of project coordinator and ALMA Sistemi is participating in the exploitation and dissemination of the project results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.