The purpose of this study was to create and validate a standardized framework for the evaluation of the ankle stiffness of two designs of 3D printed ankle foot orthoses (AFOs). The creation of four finite element (FE) models allowed patient-specific quantification of the stiffness and stress distribution over their specific range of motion during the second rocker of the gait. Validation was performed by comparing the model outputs with the results obtained from a dedicated experimental setup, which showed an overall good agreement with a maximum relative error of 10.38% in plantarflexion and 10.66% in dorsiflexion. The combination of advanced computer modelling algorithms and 3D printing techniques clearly shows potential to further improve the manufacturing process of AFOs.
Background: Ankle foot orthoses are external medical devices applied around the ankle joint area to provide stability to patients with neurological, muscular, and/or anatomical disabilities, with the aim of restoring a more natural gait pattern. Study design: This is a literature review. Objectives: To provide a description of the experimental and computational methods present in the current literature for evaluating the mechanical properties of the ankle foot orthoses. Methods: Different electronic databases were used for searching English-language articles realized from 1990 onward in order to select the newest and most relevant information available. Results: A total of 46 articles were selected, which describe the different experimental and computational approaches used by research groups worldwide. Conclusion: This review provides information regarding processes adopted for the evaluation of mechanical properties of ankle foot orthoses, in order to both improve their design and gain a deeper understanding of their clinical use. The consensus drawn is that the best approach would be represented by a combination of advanced computational models and experimental techniques, capable of being used to optimally mimic real-life conditions. Clinical relevance In literature, several methods are described for the mechanical evaluation of ankle foot orthoses (AFOs); therefore, the goal of this review is to guide the reader to use the best approach in the quantification of the mechanical properties of the AFOs and to help gaining insight in the prescription process.
ObjectiveThe purpose of this study was the construction of a new semi-automated experimental setup for the evaluation of the stiffness of ankle foot orthoses (AFOs) around an axis aligned to the anatomical ankle joint during the second rocker of the gait. The setup, developed in close collaboration with the orthopedic device company V!GO NV (Wetteren, Belgium), allows measurement of plantarflexion and dorsiflexion in the sagittal plane for a maximal range of motion of 50° (− 25° plantarflexion up to 25° dorsiflexion) in a non-destructive way.ResultsThe mechanical properties of four 3D printed AFOs are investigated, based on the ranges of motion derived from the gait assessment of the patients when they walked with their AFO. The reliability of the stiffness measures was studied by the evaluation of the test–retest repeatability and the intra-tester and inter-tester variability. These studies revealed that the ankle stiffness can be measured with high reliability (ICC = 0.94–1.00). The obtained outcomes indicate that the experimental setup could be applied to measure the ankle stiffness of any topology of AFOs and, in the future, help finding the correlation with the information coming from the gait assessment of the patients.Electronic supplementary materialThe online version of this article (10.1186/s13104-018-3752-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.