Neurofilaments (Nfs) are the major structural component of neurons. Their role as a potential biomarker of several neurodegenerative diseases has been investigated in past years with promising results. However, even under physiological conditions, little is known about the leaking of Nfs from the neuronal system and their detection in the cerebrospinal fluid (CSF) and blood. This study aimed at developing a mathematical model of Nf transport in healthy subjects in the 20-90 age range. The model was implemented as a set of ordinary differential equations describing the trafficking of Nfs from the nervous system to the periphery. Model parameters were calibrated on typical Nf levels obtained from the literature. An age-dependent function modeled on CSF data was also included and validated on data measured in serum. We computed a global sensitivity analysis of model rates and volumes to identify the most sensitive parameters affecting the model's steady state. Age, Nf synthesis, and degradation rates proved to be relevant for all model variables. Nf levels in the CSF and in blood were observed to be sensitive to the Nf leakage rates from neurons and to the blood clearance rate, and CSF levels were also sensitive to rates representing CSF turnover. An additional parameter perturbation analysis was also performed to investigate possible transient effects on the model variables not captured by the sensitivity analysis. The model provides useful insights into Nf transport and constitutes the basis for implementing quantitative system pharmacology extensions to investigate Nf trafficking in neurodegenerative diseases.
Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?The change of neurofilament (Nf) concentration in the cerebrospinal fluid and blood is a potential marker of several neurodegenerative diseases and brain injury.
Mathematical models have grown in size and complexity becoming often computationally intractable. In sensitivity analysis and optimization phases, critical for tuning, validation and qualification, these models may be run thousands of times. Scientific programming languages popular for prototyping, such as MATLAB and R, can be a bottleneck in terms of performance. Here we show a compiler-based approach, designed to be universal at handling engineering and life sciences modeling styles, that automatically translates models into fast C code. At first QSPcc is demonstrated to be crucial in enabling the research on otherwise intractable Quantitative Systems Pharmacology models, such as in rare Lysosomal Storage Disorders. To demonstrate the full value in seamlessly accelerating, or enabling, the R&D efforts in natural sciences, we then benchmark QSPcc against 8 solutions on 24 real-world projects from different scientific fields. With speed-ups of 22000x peak, and 1605x arithmetic mean, our results show consistent superior performances.
Phosphorylated neurofilament heavy subunit (pNfH) has been recently identified as a promising biomarker of disease onset and treatment efficacy in spinal muscular atrophy (SMA). This study introduces a quantitative systems pharmacology model representing the SMA pediatric scenario in the age range of 0-20 years with and without treatment with the antisense oligonucleotide nusinersen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.