Deep convolutional neural networks trained end-to-end are the state-of-the-art methods to regress dense disparity maps from stereo pairs. These models, however, suffer from a notable decrease in accuracy when exposed to scenarios significantly different from the training set (e.g., real vs synthetic images, etc.). We argue that it is extremely unlikely to gather enough samples to achieve effective training/tuning in any target domain, thus making this setup impractical for many applications. Instead, we propose to perform unsupervised and continuous online adaptation of a deep stereo network, which allows for preserving its accuracy in any environment. However, this strategy is extremely computationally demanding and thus prevents real-time inference. We address this issue introducing a new lightweight, yet effective, deep stereo architecture, Modularly ADaptive Network (MADNet), and developing a Modular ADaptation (MAD) algorithm, which independently trains sub-portions of the network.By deploying MADNet together with MAD we introduce the first real-time self-adaptive deep stereo system enabling competitive performance on heterogeneous datasets.Our code is publicly available at https://github.com/CVLAB-Unibo/ Real-time-self-adaptive-deep-stereo.
Recent ground-breaking works have shown that deep neural networks can be trained end-to-end to regress dense disparity maps directly from image pairs. Computer generated imagery is deployed to gather the large data corpus required to train such networks, an additional fine-tuning allowing to adapt the model to work well also on real and possibly diverse environments. Yet, besides a few public datasets such as Kitti, the ground-truth needed to adapt the network to a new scenario is hardly available in practice.In this paper we propose a novel unsupervised adaptation approach that enables to fine-tune a deep learning stereo model without any ground-truth information. We rely on off-the-shelf stereo algorithms together with state-of-the-art confidence measures, the latter able to ascertain upon correctness of the measurements yielded by former. Thus, we train the network based on a novel loss-function that penalizes predictions disagreeing with the highly confident disparities provided by the algorithm and enforces a smoothness constraint. Experiments on popular datasets (KITTI 2012, KITTI 2015 and Middlebury 2014 and other challenging test images demonstrate the effectiveness of our proposal.
The arrangement of products in store shelves is carefully planned to maximize sales and keep customers happy. However, verifying compliance of real shelves to the ideal layout is a costly task routinely performed by the store personnel. In this paper, we propose a computer vision pipeline to recognize products on shelves and verify compliance to the planned layout. We deploy local invariant features together with a novel formulation of the product recognition problem as a sub-graph isomorphism between the items appearing in the given image and the ideal layout. This allows for auto-localizing the given image within the aisle or store and improving recognition dramatically. 1 missing or misplaced items. Key to our approach is a novel formulation of the problem as a sub-graph isomorphism between the product detected in the given image and those that should ideally be found therein given the planogram. Accordingly, our pipeline relies on a standard feature-based object recognition step, followed by the novel graph-based consistency check and a final localized image search to improve the overall product recognition rate.
Real world applications of stereo depth estimation require models that are robust to dynamic variations in the environment. Even though deep learning based stereo methods are successful, they often fail to generalize to unseen variations in the environment, making them less suitable for practical applications such as autonomous driving. In this work, we introduce a "learning-to-adapt" framework that enables deep stereo methods to continuously adapt to new target domains in an unsupervised manner. Specifically, our approach incorporates the adaptation procedure into the learning objective to obtain a base set of parameters that are better suited for unsupervised online adaptation. To further improve the quality of the adaptation, we learn a confidence measure that effectively masks the errors introduced during the unsupervised adaptation. We evaluate our method on synthetic and real-world stereo datasets and our experiments evidence that learning-to-adapt is, indeed beneficial for online adaptation on vastly different domains. * Work done while at University of Oxford. † Second two authors contributed equally.arXiv:1904.02957v1 [cs.CV] 5 Apr 2019 Model Agnostic Meta LearningModel Agnostic Meta Learning (MAML) [5] is a popular meta-learning algorithm designed for few-shot learning problems. The objective is to learn a base model θ * , which
Recognition of grocery products in store shelves poses peculiar challenges. Firstly, the task mandates the recognition of an extremely high number of different items, in the order of several thousands for medium-small shops, with many of them featuring small inter and intra class variability. Then, available product databases usually include just one or a few studio-quality images per product (referred to herein as reference images), whilst at test time recognition is performed on pictures displaying a portion of a shelf containing several products and taken in the store by cheap cameras (referred to as query images). Moreover, as the items on sale in a store as well as their appearance change frequently over time, a practical recognition system should handle seamlessly new products/packages. Inspired by recent advances in object detection and image retrieval, we propose to leverage on state of the art object detectors based on deep learning to obtain an initial productagnostic item detection. Then, we pursue product recognition through a similarity search between global descriptors computed on reference and cropped query images. To maximize performance, we learn an ad-hoc global descriptor by a CNN trained on reference images based on an image embedding loss. Our system is computationally expensive at training time but can perform recognition rapidly and accurately at test time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.