Deep convolutional neural networks trained end-to-end are the state-of-the-art methods to regress dense disparity maps from stereo pairs. These models, however, suffer from a notable decrease in accuracy when exposed to scenarios significantly different from the training set (e.g., real vs synthetic images, etc.). We argue that it is extremely unlikely to gather enough samples to achieve effective training/tuning in any target domain, thus making this setup impractical for many applications. Instead, we propose to perform unsupervised and continuous online adaptation of a deep stereo network, which allows for preserving its accuracy in any environment. However, this strategy is extremely computationally demanding and thus prevents real-time inference. We address this issue introducing a new lightweight, yet effective, deep stereo architecture, Modularly ADaptive Network (MADNet), and developing a Modular ADaptation (MAD) algorithm, which independently trains sub-portions of the network.By deploying MADNet together with MAD we introduce the first real-time self-adaptive deep stereo system enabling competitive performance on heterogeneous datasets.Our code is publicly available at https://github.com/CVLAB-Unibo/ Real-time-self-adaptive-deep-stereo.
Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on. This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to stateof-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem. Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-theart slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.
Depth estimation from a single image represents a fascinating, yet challenging problem with countless applications. Recent works proved that this task could be learned without direct supervision from ground truth labels leveraging image synthesis on sequences or stereo pairs. Focusing on this second case, in this paper we leverage stereo matching in order to improve monocular depth estimation. To this aim we propose monoResMatch, a novel deep architecture designed to infer depth from a single input image by synthesizing features from a different point of view, horizontally aligned with the input image, performing stereo matching between the two cues. In contrast to previous works sharing this rationale, our network is the first trained end-to-end from scratch. Moreover, we show how obtaining proxy ground truth annotation through traditional stereo algorithms, such as Semi-Global Matching, enables more accurate monocular depth estimation still countering the need for expensive depth labels by keeping a self-supervised approach. Exhaustive experimental results prove how the synergy between i) the proposed monoResMatch architecture and ii) proxy-supervision attains state-of-theart for self-supervised monocular depth estimation. The code is publicly available at https
Recent ground-breaking works have shown that deep neural networks can be trained end-to-end to regress dense disparity maps directly from image pairs. Computer generated imagery is deployed to gather the large data corpus required to train such networks, an additional fine-tuning allowing to adapt the model to work well also on real and possibly diverse environments. Yet, besides a few public datasets such as Kitti, the ground-truth needed to adapt the network to a new scenario is hardly available in practice.In this paper we propose a novel unsupervised adaptation approach that enables to fine-tune a deep learning stereo model without any ground-truth information. We rely on off-the-shelf stereo algorithms together with state-of-the-art confidence measures, the latter able to ascertain upon correctness of the measurements yielded by former. Thus, we train the network based on a novel loss-function that penalizes predictions disagreeing with the highly confident disparities provided by the algorithm and enforces a smoothness constraint. Experiments on popular datasets (KITTI 2012, KITTI 2015 and Middlebury 2014 and other challenging test images demonstrate the effectiveness of our proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.