Unsupervised depth estimation from a single image is a very attractive technique with several implications in robotic, autonomous navigation, augmented reality and so on. This topic represents a very challenging task and the advent of deep learning enabled to tackle this problem with excellent results. However, these architectures are extremely deep and complex. Thus, real-time performance can be achieved only by leveraging power-hungry GPUs that do not allow to infer depth maps in application fields characterized by low-power constraints. To tackle this issue, in this paper we propose a novel architecture capable to quickly infer an accurate depth map on a CPU, even of an embedded system, using a pyramid of features extracted from a single input image. Similarly to stateof-the-art, we train our network in an unsupervised manner casting depth estimation as an image reconstruction problem. Extensive experimental results on the KITTI dataset show that compared to the top performing approach our network has similar accuracy but a much lower complexity (about 6% of parameters) enabling to infer a depth map for a KITTI image in about 1.7 s on the Raspberry Pi 3 and at more than 8 Hz on a standard CPU. Moreover, by trading accuracy for efficiency, our network allows to infer maps at about 2 Hz and 40 Hz respectively, still being more accurate than most state-of-theart slower methods. To the best of our knowledge, it is the first method enabling such performance on CPUs paving the way for effective deployment of unsupervised monocular depth estimation even on embedded systems.
Depth estimation from a single image represents a fascinating, yet challenging problem with countless applications. Recent works proved that this task could be learned without direct supervision from ground truth labels leveraging image synthesis on sequences or stereo pairs. Focusing on this second case, in this paper we leverage stereo matching in order to improve monocular depth estimation. To this aim we propose monoResMatch, a novel deep architecture designed to infer depth from a single input image by synthesizing features from a different point of view, horizontally aligned with the input image, performing stereo matching between the two cues. In contrast to previous works sharing this rationale, our network is the first trained end-to-end from scratch. Moreover, we show how obtaining proxy ground truth annotation through traditional stereo algorithms, such as Semi-Global Matching, enables more accurate monocular depth estimation still countering the need for expensive depth labels by keeping a self-supervised approach. Exhaustive experimental results prove how the synergy between i) the proposed monoResMatch architecture and ii) proxy-supervision attains state-of-theart for self-supervised monocular depth estimation. The code is publicly available at https
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.