Substantial evidence now exists that intrinsic free-radical scavenging contributes to the receptor-independent neuroprotective effects of estrogens. This activity is inherently associated with the presence of a phenolic A-ring in the steroid. We report a previously unrecognized antioxidant cycle that maintains the ''chemical shield'' raised by estrogens against the most harmful reactive oxygen species, the hydroxyl radical ( • OH) produced by the Fenton reaction. In this cycle, the capture of • OH was shown to produce a nonphenolic quinol with no affinity to the estrogen receptors. This quinol is then rapidly converted back to the parent estrogen via an enzyme-catalyzed reduction by using NAD(P)H as a coenzyme (reductant) and, unlike redox cycling of catechol estrogens, without the production of reactive oxygen species. Due to this process, protection of neuronal cells against oxidative stress is also possible by quinols that essentially act as prodrugs for the active hormone. We have shown that the quinol obtained from a 17-estradiol derivative was, indeed, able to attenuate glutamate-induced oxidative stress in cultured hippocampus-derived HT-22 cells. Estrone quinol was also equipotent with its parent estrogen in reducing lesion volume in ovariectomized rats after transient middle carotid artery occlusion followed by a 24-h reperfusion. These findings may establish the foundation for a rational design of neuroprotective antioxidants focusing on steroidal quinols as unique molecular leads.hydroxyl radical ͉ ischemia ͉ prodrug
The effect of chronic morphine exposure on the synaptic plasma-membrane subproteome in rats was studied by the isotope-coded affinity tag (ICAT) method coupled with capillary reversed-phase liquid chromatography/electrospray ionization mass spectrometry and tandem mass spectrometry. ICAT-labeled tryptic peptides of synaptic membrane proteins were successfully identified using tandem mass spectrometry in conjunction with protein database searching. Several important synaptic plasma-membrane proteins displayed significant regulation changes as a result of chronic morphine exposure in vivo. In particular, an integral membrane protein Na(+)/K+ ATPase (alpha-subunit) involved in regulation of the cell membrane potential by controlling sodium and potassium ion permeability was downregulated by 39 +/- 2%. This result was in excellent agreement with the reduction in electrogenic Na+, K+ pumping due to about 40% downregulation of Na(+)/K+ ATPase alpha3-isoform in myenteric S-neurons of morphine-exposed guinea-pigs measured by others via immunohistochemistry. The decrease in the abundance of non-erythroid alpha II-spectrin in the synaptic plasma-membrane fraction was also observed, which was hypothetically associated with the breakdown of the protein due to the upregulation of the proteolytic enzyme caspase-3 upon chronic morphine exposure.
Metabolically stable and centrally acting thyrotropin-releasing hormone (TRH) analogues were designed by replacing the central histidine with substituted pyridinium moieties. Their analeptic and acetylcholine-releasing actions were evaluated to assess their potency as central nervous system (CNS) agents. A strong experimental connection between these two CNS-mediated actions of the TRH analogues was obtained in subject animals. The analogue 3-(aminocarbonyl)-1-(3-[2-(aminocarbonyl)pyrrolidin-1-yl]-3-oxo-2-[[(5-oxopyrrolidin-2-yl)carbonyl]amino]propyl)pyridinium (1a) showed the highest (TRH-equivalent) potency and longest, dose-dependent duration of action from a series of homologous compounds in antagonizing pentobarbital-induced narcosis when administered intravenously in its CNS-permeable prodrug form (2a) obtained via reduction of the pyridinium moiety to the nonionic dihydropyridine. The maximum change in hippocampal acetylcholine concentration upon perfusion of the pyridinium-containing tripeptides into the hippocampus of rats was also achieved with 1a. No binding to the endocrine TRH receptor was measured for the TRH analogues reported here; therefore, our design afforded a novel lead for centrally acting TRH analogues. We have also demonstrated the benefits of the prodrug approach on the pharmacokinetics and brain uptake/retention of pyridinium-containing TRH analogues (measured by in vivo microdialysis sampling) upon systemic administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.