The amount of archaeological literature is growing rapidly. Until recently, these data were only accessible through metadata search. We implemented a text retrieval engine for a large archaeological text collection (∼ 658 Million words). In archaeological IR, domain-specific entities such as locations, time periods, and artefacts, play a central role. This motivated the development of a named entity recognition (NER) model to annotate the full collection with archaeological named entities. In this paper, we present ArcheoBERTje, a BERT model pre-trained on Dutch archaeological texts. We compare the model’s quality and output on a Named Entity Recognition task to a generic multilingual model and a generic Dutch model. We also investigate ensemble methods for combining multiple BERT models, and combining the best BERT model with a domain thesaurus using Conditional Random Fields (CRF). We find that ArcheoBERTje outperforms both the multilingual and Dutch model significantly with a smaller standard deviation between runs, reaching an average F1 score of 0.735. The model also outperforms ensemble methods combining the three models. Combining ArcheoBERTje predictions and explicit domain knowledge from the thesaurus did not increase the F1 score. We quantitatively and qualitatively analyse the differences between the vocabulary and output of the BERT models on the full collection and provide some valuable insights in the effect of fine-tuning for specific domains. Our results indicate that for a highly specific text domain such as archaeology, further pre-training on domain-specific data increases the model’s quality on NER by a much larger margin than shown for other domains in the literature, and that domain-specific pre-training makes the addition of domain knowledge from a thesaurus unnecessary.
The amount of archaeological literature is growing rapidly. Until recently, these data were only accessible through metadata search. We implemented a text retrieval engine for a large archaeological text collection (∼ 658 Million words). In archaeological IR, domain-specific entities such as locations, time periods, and artefacts, play a central role. This motivated the development of a named entity recognition (NER) model to annotate the full collection with archaeological named entities. In this paper, we present ArcheoBERTje, a BERT model pre-trained on Dutch archaeological texts. We compare the model's quality and output on a Named Entity Recognition task to a generic multilingual model and a generic Dutch model. We also investigate ensemble methods for combining multiple BERT models, and combining the best BERT model with a domain thesaurus using Conditional Random Fields (CRF). We find that ArcheoBERTje outperforms both the multilingual and Dutch model significantly with a smaller standard deviation between runs, reaching an average F1 score of 0.735. The model also outperforms ensemble methods combining the three models. Combining ArcheoBERTje predictions and explicit domain knowledge from the thesaurus did not increase the F1 score. We quantitatively and qualitatively analyse the differences between the vocabulary and output of the BERT models on the full collection and provide some valuable insights in the effect of fine-tuning for specific domains. Our results indicate that for a highly specific text domain such as archaeology, further pre-training on domain-specific data increases the model's quality on NER by a much larger margin than shown for other domains in the literature, and that domain-specific pre-training makes the addition of domain knowledge from a thesaurus unnecessary.
The extraction of information from Dutch archaeological grey literature has recently been investigated by the AGNES project. AGNES aims to disclose relevant information by means of a web search engine, to enable researchers to search through excavation reports. In this paper, we focus on the multi-labelling of archaeological excavation reports with time periods and site types, and provide a manually labelled reference set to this end. We propose a series of approaches, pre-processing methods, and various modifications of the training set to address the often low quality of both texts and labels. We find that despite those issues, our proposed methods lead to promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.