All human cultures have music and dance, and the two activities are so closely integrated that many languages use just one word to describe both. Recent research points to a deep cognitive connection between music and dance-like movements in humans, fueling speculation that music and dance have coevolved and prompting the need for studies of audiovisual displays in other animals. However, little is known about how nonhuman animals integrate acoustic and movement display components. One striking property of human displays is that performers coordinate dance with music by matching types of dance movements with types of music, as when dancers waltz to waltz music. Here, we show that a bird also temporally coordinates a repertoire of song types with a repertoire of dance-like movements. During displays, male superb lyrebirds (Menura novaehollandiae) sing four different song types, matching each with a unique set of movements and delivering song and dance types in a predictable sequence. Crucially, display movements are both unnecessary for the production of sound and voluntary, because males sometimes sing without dancing. Thus, the coordination of independently produced repertoires of acoustic and movement signals is not a uniquely human trait.
Ecosystem engineers physically modify their environment, thereby altering habitats for other organisms. Increasingly, "engineers" are recognized as an important focus for conservation and ecological restoration because their actions affect a range of ecosystem processes and thereby influence how ecosystems function. The Superb Lyrebird Menura novaehollandiae is proposed as an ecosystem engineer in forests of southeastern Australia due to the volume of soil and litter it turns over when foraging. We measured the seasonal and spatial patterns of foraging by Lyrebirds and the amount of soil displaced in forests in the Central Highlands, Victoria. We tested the effects of foraging on litter, soil nutrients and soil physical properties by using an experimental approach with three treatments: Lyrebird exclusion, Lyrebird exclusion with simulated foraging, and non-exclusion reference plots. Treatments were replicated in three forest types in each of three forest blocks. Lyrebirds foraged extensively in all forest types in all seasons. On average, Lyrebirds displaced 155.7 Mg/ha of litter and soil in a 12-month period. Greater displacement occurred where vegetation complexity (<50 cm height) was low. After two years of Lyrebird exclusion, soil compaction (top 7.5 cm) increased by 37% in exclusion plots compared with baseline measures, while in unfenced plots it decreased by 22%. Litter depth was almost three times greater in fenced than unfenced plots. Soil moisture, pH, and soil nutrients showed no difference between treatments. The enormous extent of litter and soil turned over by the Superb Lyrebird is unparalleled by any other vertebrate soil engineer in terrestrial ecosystems globally. The profound influence of such foraging activity on forest ecosystems is magnified by its year-round pattern and widespread distribution. The disturbance regime that Lyrebirds impose has implications for diverse ecosystem processes including decomposition and nutrient cycling, the composition of litter-and soildwelling invertebrate communities, the shaping of ground-layer vegetation patterns, and fire behavior and post-fire ecosystem recovery. Maintaining Lyrebird populations as a key facilitator of ecosystem function is now timely and critical as unprecedented wildfires in eastern Australia in summer 2019-2020 have severely burned~12 million ha of forest, including~30% of the geographic range of the Superb Lyrebird.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.