The TIRADS has allowed us to improve patient management and cost-effectiveness, avoiding unnecessary FNAB. In addition, we have established standard codes to be used both for radiologists and endocrinologists.
There is evidence from human twin and family studies as well as mouse and rat selection experiments that there are considerable interindividual differences in the response of cardiorespiratory fitness (CRF) and other cardiometabolic traits to a given exercise programme dose. We developed this consensus statement on exercise response variability following a symposium dedicated to this topic. There is strong evidence from both animal and human studies that exercise training doses lead to variable responses. A genetic component contributes to exercise training response variability.In this consensus statement, we (1) briefly review the literature on exercise response variability and the various sources of variations in CRF response to an exercise programme, (2) introduce the key research designs and corresponding statistical models with an emphasis on randomised controlled designs with or without multiple pretests and post-tests, crossover designs and repeated measures designs, (3) discuss advantages and disadvantages of multiple methods of categorising exercise response levels—a topic that is of particular interest for personalised exercise medicine and (4) outline approaches that may identify determinants and modifiers of CRF exercise response. We also summarise gaps in knowledge and recommend future research to better understand exercise response variability.
Eight weeks of ET-BFR can increase muscle strength and induce similar muscle hypertrophy responses to RT while V˙O2max responses also increased post-intervention even with a significantly lower work load compared to ET. Our findings provide new insight to some of the molecular mechanisms mediating adaptation responses with ET-BFR and the potential for this training protocol to improve muscle and cardiorespiratory capacity.
BackgroundRecent studies have begun to identify the molecular determinants of inter-individual variability of cardiorespiratory fitness (CRF) in response to exercise training programs. However, we still have an incomplete picture of the molecular mechanisms underlying trainability in response to exercise training.ObjectiveWe investigated baseline serum and skeletal muscle metabolomics profile and its associations with maximal power output (MPO) gains in response to 8-week of continuous endurance training (ET) and high-intensity interval training (HIIT) programs matched for total units of exercise performed (the TIMES study).MethodsEighty healthy sedentary young adult males were randomized to one of three groups and 70 were defined as completers (> 90% of sessions): ET (n = 30), HIIT (n = 30) and control (CO, n = 10). For the CO, participants were asked to not exercise for 8 weeks. Serum and skeletal muscle samples were analyzed by 1H-NMR spectroscopy. The targeted screens yielded 43 serum and 70 muscle reproducible metabolites (intraclass > 0.75; coefficient of variation < 25%). Associations of baseline metabolites with MPO trainability were explored within each training program via three analytical strategies: (1) correlations with gains in MPO; (2) differences between high and low responders to ET and HIIT; and (3) metabolites contributions to the most significant pathways related to gains in MPO. The significance level was set at P < 0.01 or false discovery rate of 0.1.ResultsThe exercise programs generated similar gains in MPO (ET = 21.4 ± 8.0%; HIIT = 24.3 ± 8.5%). MPO associated baseline metabolites supported by all three levels of evidence were: serum glycerol, muscle alanine, proline, threonine, creatinine, AMP and pyruvate for ET, and serum lysine, phenylalanine, creatine, and muscle glycolate for HIIT. The most common pathways suggested by the metabolite profiles were aminoacyl-tRNA biosynthesis, and carbohydrate and amino acid metabolism.ConclusionWe suggest that MPO gains in both programs are potentially associated with metabolites indicative of baseline amino acid and translation processes with additional evidence for carbohydrate metabolism in ET.
• TIRADS classification allows accurate selection of thyroid nodules requiring biopsy (TIRADS 4-5). • The recognition of benign/possibly benign patterns can avoid unnecessary procedures. • This classification and its sonographic patterns are validated using surgical specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.