A data set is presented which involves pumping multiple, unique chemical tracers into a single ‘Wolfcamp B’ fracture stage. The goal of this tracer test is to shed light on the flowback characteristics of individually tagged fluid & sand segments by adding another layer of granularity to a typical tracer flowback report. The added intra-stage level detail can provide insights into fracture behavior when stimulating shale reservoirs by looking at individual fluid segment tracer recoveries. This data set could aid in the interpretation of: Identifying fluid segments placed outside of the P-SRV (Propped Stimulated Reservoir Volume) Fracture Complexity A total of 12 water phase tracers and 12 oil phase tracers were injected sequentially from "Pad" to "Flush". After pumping the pad stage, unique tracers were used to tag the "Proppant Laden Fluid" from the 0.2 ppa 100 mesh sand stage to the 2 ppa 40/70 mesh sand stage, before going to flush. The flush volume was not traced. Upon flowback, produced fluids were analyzed for the concentration of each tracer within the produced fluid samples. The first goal was to determine whether any traced fluid would be placed within "unpropped" SRV. The second goal was to determine the order of load fluid returns, to verify the "first-in, last-out" phenomenon, and to ascertain any degree of fluid mixing, which could be an indication of increased fracture complexity. The results illustrate the average tracer concentration and arrival time of each traced fluid segment, which was then used to characterize the fracture stage. All tracers were detected in the produced fluid samples, indicating that no traced segment was placed outside of the propped fracture network. The results also indicate that significant tracer mixing occured within the fracture network, a potential indicator of fracture complexity. All individually traced segments flowed back simultaneously, albeit at varying tracer concentrations. The residence time calculation for each tracer showed that frac fluid injected into the later proppant segments generally flowed back faster than the earlier segments. No obvious piston-like displacement of frac fluid was observed from the tracer data.
This paper presents a method of using chemical tracer data to quantitatively evaluate interwell communication in various well configurations by combining raw tracer data with field production data. Qualitatively, tracer breakthrough in an offset well indicates that there is communication between the infill and primary well, but by utilizing the method described in this paper, the fracture driven interaction (FDI) severity can be quantified by determining the total mass of tracer produced out of the primary well and new wells. The technique yields an allocation of load fluid and hydrocarbon recovery at each well and associated formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.