Quantum interference of two independent particles in pure quantum states is fully described by the particles' distinguishability: the closer the particles are to being identical, the higher the degree of quantum interference. When more than two particles are involved, the situation becomes more complex and interference capability extends beyond pairwise distinguishability, taking on a surprisingly rich character. Here, we study many-particle interference using three photons. We show that the distinguishability between pairs of photons is not sufficient to fully describe the photons' behavior in a scattering process, but that a collective phase, the triad phase, plays a role. We are able to explore the full parameter space of threephoton interference by generating heralded single photons and interfering them in a fiber tritter. Using multiple degrees of freedom-temporal delays and polarization-we isolate three-photon interference from two-photon interference. Our experiment disproves the view that pairwise two-photon distinguishability uniquely determines the degree of nonclassical many-particle interference. DOI: 10.1103/PhysRevLett.118.153603 The famous Hong-Ou-Mandel (HOM) experiment in 1987 provided the first important example of nonclassical two-photon interference [1]. Two independent photons impinging on a beam splitter exhibit bunching behavior at the output ports that cannot be explained by a classical field model. The degree of bunching depends on how similar the two photons are in all degrees of freedom, for example, time, frequency, polarization, and spatial mode. Extending the study of interference to many particles is of interest from a fundamental as well as from a technological viewpoint [2][3][4][5][6][7]. The scattering of multiple photons in linear networks is related to solving problems in quantum information processing, metrology, and quantum state engineering [8][9][10][11][12][13][14][15][16]. Thus, understanding multiphoton interference is also of great relevance for practical applications.Here, we demonstrate how many-particle interference is fundamentally richer than two-particle interference [17]. Two situations with the same pairwise distinguishability can lead to a different output distribution. This is due to a phase, the triad phase, that occurs only when more than two photons interfere.We use independent photons and a tritter, a three-port symmetric beam splitter to investigate many-particle interference. We isolate the triad phase for the first time by interfering three photons in a tritter and exploiting multiple degrees of freedom, here time and polarization. We show that interfering three identical photons and varying time delays between them, as demonstrated in previous work [5,18,19], is not sufficient to study three-photon interference in full generality [20,21]. Our experiment allows us to isolate and tune the three-photon interference term as distinct from two-photon interference. In particular, manipulation of the triad phase goes beyond what is possible using temporal...
Integrated photonics will play a key role in quantum systems as they grow from few-qubit prototypes to tens of thousands of qubits. The underlying optical quantum technologies can only be realized through the integration of these components onto quantum photonic integrated circuits (QPICs) with accompanying electronics. In the last decade, remarkable advances in quantum photonic integration have enabled table-top experiments to be scaled down to prototype chips with improvements in efficiency, robustness, and key performance metrics. These advances have enabled integrated quantum photonic technologies combining up to 650 optical and electrical components onto a single chip that are capable of programmable quantum information processing, chip-to-chip networking, hybrid quantum system integration, and high-speed communications. In this roadmap article, we highlight the status, current and future challenges, and emerging technologies in several key research areas in integrated quantum photonics, including photonic platforms, quantum and classical light sources, quantum frequency conversion, integrated detectors, and applications in computing, communications, and sensing. With advances in materials, photonic design architectures, fabrication and integration processes, packaging, and testing and benchmarking, in the next decade we can expect a transition from single- and few-function prototypes to large-scale integration of multi-functional and reconfigurable devices that will have a transformative impact on quantum information science and engineering.
Resonance fluorescence arises from the interaction of an optical field with a two-level system, and has played a fundamental role in the development of quantum optics and its applications. Despite its conceptual simplicity, it entails a wide range of intriguing phenomena, such as the Mollow-triplet emission spectrum, photon antibunching and coherent photon emission. One fundamental aspect of resonance fluorescence--squeezing in the form of reduced quantum fluctuations in the single photon stream from an atom in free space--was predicted more than 30 years ago. However, the requirement to operate in the weak excitation regime, together with the combination of modest oscillator strength of atoms and low collection efficiencies, has continued to necessitate stringent experimental conditions for the observation of squeezing with atoms. Attempts to circumvent these issues had to sacrifice antibunching, owing to either stimulated forward scattering from atomic ensembles or multi-photon transitions inside optical cavities. Here, we use an artificial atom with a large optical dipole enabling 100-fold improvement of the photon detection rate over the natural atom counterpart and reach the necessary conditions for the observation of quadrature squeezing in single resonance-fluorescence photons. By implementing phase-dependent homodyne intensity-correlation detection, we demonstrate that the electric field quadrature variance of resonance fluorescence is three per cent below the fundamental limit set by vacuum fluctuations, while the photon statistics remain antibunched. The presence of squeezing and antibunching simultaneously is a fully non-classical outcome of the wave-particle duality of photons.
The world’s first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.