Analysis of human gait using 3-dimensional co-occurrence skeleton joints extracted from Lidar sensor data has been shown a viable method for predicting person identity. The co-occurrence based networks rely on the spatial changes between frames of each joint in the skeleton data sequence. Normally, this data is obtained using a Lidar skeleton extraction method to estimate these co-occurrence features from raw Lidar frames, which can be prone to incorrect joint estimations when part of the body is occluded. These datasets can also be time consuming and expensive to collect and typically offer a small number of samples for training and testing network models. The small number of samples and occlusion can cause challenges when training deep neural networks to perform real time tracking of the person in the scene. We propose preliminary results with a deep reinforcement learning actor critic network for person tracking of 3D skeleton data using a small dataset. The proposed approach can achieve an average tracking rate of 68.92±15.90% given limited examples to train the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.