Significance Self-assembling RNA molecules play critical roles throughout biology and bioengineering. To accelerate progress in RNA design, we present EteRNA, the first internet-scale citizen science “game” scored by high-throughput experiments. A community of 37,000 nonexperts leveraged continuous remote laboratory feedback to learn new design rules that substantially improve the experimental accuracy of RNA structure designs. These rules, distilled by machine learning into a new automated algorithm EteRNABot, also significantly outperform prior algorithms in a gauntlet of independent tests. These results show that an online community can carry out large-scale experiments, hypothesis generation, and algorithm design to create practical advances in empirical science.
This paper presents the results of a study in which artists made line drawings intended to convey specific 3D shapes. The study was designed so that drawings could be registered with rendered images of 3D models, supporting an analysis of how well the locations of the artists' lines correlate with other artists', with current computer graphics line definitions, and with the underlying differential properties of the 3D surface. Lines drawn by artists in this study largely overlapped one another (75% are within 1mm of another line), particularly along the occluding contours of the object. Most lines that do not overlap contours overlap large gradients of the image intensity, and correlate strongly with predictions made by recent line drawing algorithms in computer graphics. 14% were not well described by any of the local properties considered in this study. The result of our work is a publicly available data set of aligned drawings, an analysis of where lines appear in that data set based on local properties of 3D models, and algorithms to predict where artists will draw lines for new scenes.
This paper presents the results of a study in which artists made line drawings intended to convey specific 3D shapes. The study was designed so that drawings could be registered with rendered images of 3D models, supporting an analysis of how well the locations of the artists' lines correlate with other artists', with current computer graphics line definitions, and with the underlying differential properties of the 3D surface. Lines drawn by artists in this study largely overlapped one another (75% are within 1mm of another line), particularly along the occluding contours of the object. Most lines that do not overlap contours overlap large gradients of the image intensity, and correlate strongly with predictions made by recent line drawing algorithms in computer graphics. 14% were not well described by any of the local properties considered in this study. The result of our work is a publicly available data set of aligned drawings, an analysis of where lines appear in that data set based on local properties of 3D models, and algorithms to predict where artists will draw lines for new scenes.
We propose a new method for the large-scale collection and analysis of drawings by using a mobile game specifically designed to collect such data. Analyzing this crowdsourced drawing database, we build a spatially varying model of artistic consensus at the stroke level. We then present a surprisingly simple stroke-correction method which uses our artistic consensus model to improve strokes in real-time. Importantly, our auto-corrections run interactively and appear nearly invisible to the user while seamlessly preserving artistic intent. Closing the loop, the game itself serves as a platform for large-scale evaluation of the effectiveness of our stroke correction algorithm.
This paper presents the results of a study in which artists made line drawings intended to convey specific 3D shapes. The study was designed so that drawings could be registered with rendered images of 3D models, supporting an analysis of how well the locations of the artists' lines correlate with other artists', with current computer graphics line definitions, and with the underlying differential properties of the 3D surface. Lines drawn by artists in this study largely overlapped one another (75% are within 1mm of another line), particularly along the occluding contours of the object. Most lines that do not overlap contours overlap large gradients of the image intensity, and correlate strongly with predictions made by recent line drawing algorithms in computer graphics. 14% were not well described by any of the local properties considered in this study. The result of our work is a publicly available data set of aligned drawings, an analysis of where lines appear in that data set based on local properties of 3D models, and algorithms to predict where artists will draw lines for new scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.