We have recently completed a full re-architecturing of the Rosetta molecular modeling program, generalizing and expanding its existing functionality. The new architecture enables the rapid prototyping of novel protocols by providing easy to use interfaces to powerful tools for molecular modeling. The source code of this rearchitecturing has been released as Rosetta3 and is freely available for academic use. At the time of its release, it contained 470,000 lines of code. Counting currently unpublished protocols at the time of this writing, the source includes 1,285,000 lines. Its rapid growth is a testament to its ease of use. This document describes the requirements for our new architecture, justifies the design decisions, sketches out central classes, and highlights a few of the common tasks that the new software can perform.
People exert significant amounts of problem solving effort playing computer games. Simple image- and text-recognition tasks have been successfully crowd-sourced through gamesi, ii, iii, but it is not clear if more complex scientific problems can be similarly solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodologyiv, while they compete and collaborate to optimize the computed energy. We show that top Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.
We present a real-time crowd model based on continuum dynamics. In our model, a dynamic potential field simultaneously integrates global navigation with moving obstacles such as other people, efficiently solving for the motion of large crowds without the need for explicit collision avoidance. Simulations created with our system run at interactive rates, demonstrate smooth flow under a variety of conditions, and naturally exhibit emergent phenomena that have been observed in real crowds.
Significance Self-assembling RNA molecules play critical roles throughout biology and bioengineering. To accelerate progress in RNA design, we present EteRNA, the first internet-scale citizen science “game” scored by high-throughput experiments. A community of 37,000 nonexperts leveraged continuous remote laboratory feedback to learn new design rules that substantially improve the experimental accuracy of RNA structure designs. These rules, distilled by machine learning into a new automated algorithm EteRNABot, also significantly outperform prior algorithms in a gauntlet of independent tests. These results show that an online community can carry out large-scale experiments, hypothesis generation, and algorithm design to create practical advances in empirical science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.