Many species of birds and bats undertake seasonal migrations between breeding and over-wintering sites. En-route, migrants alternate periods of flight with time spent at stopover – the time and space where individuals rest and refuel for subsequent flights. We assessed the spatial scale of movements made by migrants during stopover by using an array of automated telemetry receivers with multiple antennae to track the daily location of individuals over a geographic area ∼20×40 km. We tracked the movements of 322 individuals of seven migratory vertebrate species (5 passerines, 1 owl and 1 bat) during spring and fall migratory stopover on and adjacent to a large lake peninsula. Our results show that many individuals leaving their capture site relocate within the same landscape at some point during stopover, moving as much as 30 km distant from their site of initial capture. We show that many apparent nocturnal departures from stopover sites are not a resumption of migration in the strictest sense, but are instead relocations that represent continued stopover at a broader spatial scale.
Flying animals use aerial habitats to forage, communicate and travel. However, human activities that fragment aerial habitat with built structures, noise, and chemical or light pollution, may limit the ability of wildlife to use airspace efficiently. Applying landscape connectivity theory to aerial habitats could reveal how long-distance migrants respond to sources of aerial habitat fragmentation along their migratory routes. Artificial light at night is a major component of urbanization that fragments dark skies across North America. Attraction of nocturnal migrants to urban light is well documented, but species-specific responses, especially throughout a full migration from breeding to wintering grounds, are not. We tested hypotheses about long-distance migratory movements in relation to artificial light using a highly nocturnal, Nearctic-Neotropical avian migrant (Eastern whip-poor-will Antrostomus vociferus). We applied a resource selection framework at multiple spatial scales to explore whether GPS-tracked birds (n = 10) responded to urbanization in general, or artificial light specifically, during migratory flights. We found little evidence of attraction to artificial light during nocturnal flights. Artificial light and urbanization were highly correlated and difficult to disentangle, but the birds generally avoided urban areas and selected dark-connected skies for travel. Migratory stopovers (locations where GPS-tracked birds (n = 20) paused for at least one night), were located almost exclusively in dark, rural areas. Our results illustrate that considering how nocturnal aerial migrants respond to both aerial and terrestrial habitat elements can improve our understanding of what may facilitate their long-distance movements.
Determining the year-round spatial distributions of at-risk avian migratory species is critical for effective conservation. High-precision tracking enables the identification of distant breeding and nonbreeding areas and their connectivity, as well as migratory routes and associated threats. We GPS-tracked two groups of Eastern Whip-poor-wills ( Antrostomus vociferus (A. Wilson, 1812)) that breed near the northern edge of their range, in Manitoba and northwestern Ontario (“west”), and in southern Ontario (“east”), Canada. The western-breeding birds were also ∼5° of latitude farther north than the eastern birds. We aimed to determine the degree of spatiotemporal overlap between the two groups during fall migration and at tropical wintering sites. We found that western-breeding birds departed earlier on migration than eastern-breeding birds, but we did not detect a difference in arrival timing to wintering sites. The two breeding groups retained spatial structure during migration, until all routes converged to circumnavigate the Gulf of Mexico. Western-breeding birds overwintered at sites farther south than eastern-breeding birds, consistent with a leapfrog pattern of migration. Quantifying the strength of migratory connectivity in at-risk species can be a first step toward defining breeding populations and informing customized conservation strategies throughout the annual cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.