Machine learning (ML) is a key technology to enable accurate prediction of antibody-antigen binding, a prerequisite for in silico vaccine and antibody design. Two orthogonal problems hinder the current application of ML to antibody-specificity prediction and the benchmarking thereof: (i) The lack of a unified formalized mapping of immunological antibody specificity prediction problems into ML notation and (ii) the unavailability of large-scale training datasets. Here, we developed the Absolut! software suite that allows the parameter-based unconstrained generation of synthetic lattice-based 3D-antibody-antigen binding structures with ground-truth access to conformational paratope, epitope, and affinity. We show that Absolut!-generated datasets recapitulate critical biological sequence and structural features that render antibody-antigen binding prediction challenging. To demonstrate the immediate, high-throughput, and large-scale applicability of Absolut!, we have created an online database of 1 billion antibody-antigen structures, the extension of which is only constrained by moderate computational resources. We translated immunological antibody specificity prediction problems into ML tasks and used our database to investigate paratope-epitope binding prediction accuracy as a function of structural information encoding, dataset size, and ML method, which is unfeasible with existing experimental data. Furthermore, we found that in silico investigated conditions, predicted to increase antibody specificity prediction accuracy, align with and extend conclusions drawn from experimental antibody-antigen structural data. In summary, the Absolut! framework enables the development and benchmarking of ML strategies for biotherapeutics discovery and design.
Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: The lack of a unified ML formalization of immunological antibody specificity prediction problems and the unavailability of large-scale synthetic benchmarking datasets of real-world relevance. Here, we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based 3D-antibody-antigen binding structures with ground-truth access to conformational paratope, epitope, and affinity. We formalized common immunological antibody specificity prediction problems as ML tasks and confirmed that for both sequence and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework thus enables real-world relevant development and benchmarking of ML strategies for biotherapeutics design.
Histopathology is the gold standard method for staging and grading human tumors and provides critical information for the oncoteam’s decision making. Highly-trained pathologists are needed for careful microscopic analysis of the slides produced from tissue taken from biopsy. This is a time-consuming process. A reliable decision support system would assist healthcare systems that often suffer from a shortage of pathologists. Recent advances in digital pathology allow for high-resolution digitalization of pathological slides. Digital slide scanners combined with modern computer vision models, such as convolutional neural networks, can help pathologists in their everyday work, resulting in shortened diagnosis times. In this study, 200 digital whole-slide images are published which were collected via hematoxylin-eosin stained colorectal biopsy. Alongside the whole-slide images, detailed region level annotations are also provided for ten relevant pathological classes. The 200 digital slides, after pre-processing, resulted in 101,389 patches. A single patch is a 512 × 512 pixel image, covering 248 × 248 μm2 tissue area. Versions at higher resolution are available as well. Hopefully, HunCRC, this widely accessible dataset will aid future colorectal cancer computer-aided diagnosis and research.
To develop machine learning methods to quantify joint damage in patients with rheumatoid arthritis (RA), we developed the RA2 DREAM Challenge, a crowdsourced competition that utilized existing radiographic images and "gold-standard" scores on 674 sets of films from 562 patients. Training and leaderboard sets were provided to participants to develop methods to quantify joint space narrowing and erosions. In the final round, participants submitted containerized codes on a test set; algorithms were evaluated using weighted root mean square error (RMSE). In the leaderboard round, there were 173 submissions from 26 teams in 7 countries. Of the 13 submissions in the final round, four top-performing teams were identified. Robustness of results was assessed using Bayes factor and validated using an independent set of radiographs. The top-performing algorithms, which consisted of different styles of deep learning models, provided accurate and robust quantification of joint damage in RA. Ultimately, these methods lay the groundwork to accelerate research and help clinicians to optimize treatments to minimize joint damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.