Neurofibromatosis type 1 (NF1) is a cancer predisposition disorder that results from inactivation of the tumor-suppressor Neurofibromin, a negative regulator of RAS signaling. NF1 patients present with a wide range of clinical manifestations and the tumor with highest prevalence is cutaneous neurofibroma (cNF). Most patients harboring cNF suffer greatly from the burden of those tumors, which have no effective medical treatment. Ironically, none of the numerous NF1 mouse models developed so far recapitulate cNF. Here, we discovered that Hoxb7 serves as a lineage marker to trace the developmental origin of cNF neoplastic cells. Ablating Nf1 in the Hoxb7 lineage faithfully recapitulates both human cutaneous and plexiform neurofibroma. In addition, we discovered that modulation of the Hippo pathway acts as a “modifier” for neurofibroma tumorigenesis. This mouse model opens the doors for deciphering the evolution of cNF to identify effective therapies, where none exist today.
Cutaneous neurofibromas (cNF) are a nearly ubiquitous symptom of neurofibromatosis type 1 (NF1), a disorder with a broad phenotypic spectrum caused by germline mutation of the neurofibromatosis type 1 tumour suppressor gene (NF1). Symptoms of NF1 can include learning disabilities, bone abnormalities and predisposition to tumours such as cNFs, plexiform neurofibromas, malignant peripheral nerve sheath tumours and optic nerve tumours. There are no therapies currently approved for cNFs aside from elective surgery, and the molecular aetiology of cNF remains relatively uncharacterised. Furthermore, whereas the biallelic inactivation of NF1 in neoplastic Schwann cells is critical for cNF formation, it is still unclear which additional genetic, transcriptional, epigenetic, microenvironmental or endocrine changes are important. Significant inroads have been made into cNF understanding, including NF1 genotype–phenotype correlations in NF1 microdeletion patients, the identification of recurring somatic mutations, studies of cNF-invading mast cells and macrophages, and clinical trials of putative therapeutic targets such as mTOR, MEK and c-KIT. Despite these advances, several gaps remain in our knowledge of the associated pathogenesis, which is further hampered by a lack of translationally relevant animal models. Some of these questions may be addressed in part by the adoption of genomic analysis techniques. Understanding the aetiology of cNF at the genomic level may assist in the development of new therapies for cNF, and may also contribute to a greater understanding of NF1/RAS signalling in cancers beyond those associated with NF1. Here, we summarise the present understanding of cNF biology, including the pathogenesis, mutational landscape, contribution of the tumour microenvironment and endocrine signalling, and the historical and current state of clinical trials for cNF. We also highlight open access data resources and potential avenues for future research that leverage recently developed genomics-based methods in cancer research.
Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound–kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome.
Summary The Columbia Cancer Target Discovery and Development (CTD2) Center is developing PANACEA, a resource comprising dose-responses and RNA sequencing (RNA-seq) profiles of 25 cell lines perturbed with ∼400 clinical oncology drugs, to study a tumor-specific drug mechanism of action. Here, this resource serves as the basis for a DREAM Challenge assessing the accuracy and sensitivity of computational algorithms for de novo drug polypharmacology predictions. Dose-response and perturbational profiles for 32 kinase inhibitors are provided to 21 teams who are blind to the identity of the compounds. The teams are asked to predict high-affinity binding targets of each compound among ∼1,300 targets cataloged in DrugBank. The best performing methods leverage gene expression profile similarity analysis as well as deep-learning methodologies trained on individual datasets. This study lays the foundation for future integrative analyses of pharmacogenomic data, reconciliation of polypharmacology effects in different tumor contexts, and insights into network-based assessments of drug mechanisms of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.